15.081J/6.251J Introduction to Mathematical Programming

Lecture 3: Geometry of Linear Optimization II

1 Outline

SLIDE 1

- BFS for standard form polyhedra
- Deeper understanding of degeneracy
- Existence of extreme points
- Optimality of Extreme Points
- Representation of Polyhedra

2 BFS for standard form polyhedra

SLIDE 2

- ullet Ax=b and $x\geq 0$
- $m \times n$ matrix **A** has linearly independent rows
- $x \in \mathbb{R}^n$ is a basic solution if and only if Ax = b, and there exist indices $B(1), \ldots, B(m)$ such that:
 - The columns $A_{B(1)}, \ldots, A_{B(m)}$ are linearly independent
 - If $i \neq B(1), ..., B(m)$, then $x_i = 0$

2.1 Construction of BFS

SLIDE 3

Procedure for constructing basic solutions

- 1. Choose m linearly independent columns $A_{B(1)}, \ldots, A_{B(m)}$
- 2. Let $x_i = 0$ for all $i \neq B(1), ..., B(m)$
- 3. Solve Ax = b for $x_{B(1)}, ..., x_{B(m)}$

$$egin{aligned} m{A}m{x} &= m{b} &
ightarrow & m{B}m{x}_B + m{N}m{x}_N = m{b} \ & m{x}_N = 0, & m{x}_B = m{B}^{-1}m{b} \end{aligned}$$

2.2 Example 1

SLIDE 4

$$\begin{bmatrix} 1 & 1 & 2 & 1 & 0 & 0 & 0 \\ 0 & 1 & 6 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \boldsymbol{x} = \begin{bmatrix} 8 \\ 12 \\ 4 \\ 6 \end{bmatrix}$$

• A_4, A_5, A_6, A_7 basic columns

- Solution: x = (0, 0, 0, 8, 12, 4, 6), a BFS
- Another basis: A_3, A_5, A_6, A_7 basic columns.
- Solution: x = (0, 0, 4, 0, -12, 4, 6), not a BFS

2.3 Geometric intuition

A₁
A₂
A₃

A₁
A₂

2.4 Example 2

General form

$$\begin{array}{cccc} x_1 + x_2 + x_3 & \leq & 2 \\ x_1 & \leq & 2 \\ x_3 & \leq & 3 \\ 3x_2 + x_3 & \leq & 6 \\ x_1, x_2, x_3 & \geq & 6 \end{array}$$

SLIDE 5

SLIDE 6 SLIDE 7 Standard form

$$\begin{array}{rcl}
x_1 + x_2 + x_3 + s_1 & = & 4 \\
x_1 + s_2 & = & 2 \\
x_3 + s_3 & = & 3 \\
3x_2 + x_3 + s_4 & = & 6 \\
x_1, x_2, x_3, s_1, \dots, s_4 & > & 0
\end{array}$$

SLIDE 8

- Using the definition for BFS in polyhedra in general form :
- Check if $\begin{pmatrix} 1\\1\\1 \end{pmatrix}$, $\begin{pmatrix} 0\\0\\1 \end{pmatrix}$, $\begin{pmatrix} 0\\1\\0 \end{pmatrix}$ span \Re^3 (they do)

SLIDE 9

- Using the definition for BFS in polyhedra in standard form:
- Pick the basic variables: $x_1, x_3, s_2, s_3 : \mathbf{x_B} = (x_1, x_3, s_2, s_3)$
- Pick the nonbasic variables: $x_2, s_1, s_4 : \mathbf{x}_{\mathbf{N}} = (x_2, s_1, s_4)$

SLIDE 10

• Partition A:

SLIDE 11

$$\boldsymbol{B} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix}, \boldsymbol{N} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 0 \\ 3 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \boldsymbol{B} \text{ non-singular}$$

$$egin{aligned} oldsymbol{x_N} = oldsymbol{0}, oldsymbol{x_B} = oldsymbol{B}^{-1} oldsymbol{b} \Rightarrow \left(egin{array}{c} x_1 \ x_3 \ s_2 \ s_3 \end{array}
ight) = \left(egin{array}{c} 1 \ 3 \ 1 \ 3 \end{array}
ight) \end{aligned}$$

3 Degeneracy for standard form polyhedra

3.1 Definition

SLIDE 12

- A BFS x of $P = \{x \in \mathbb{R}^n : Ax = b, A : n \times n, x \ge 0\}$ is called <u>degenerate</u> if it contains more than n m zeros.
- x is non-degenerate if it contains exactly n-m zeros.

3.2 Example 2, revisited

SLIDE 13

• In previous example:

(2, 2, 0, 0, 0, 3, 0) degenerate: n = 7m = 4

- More than n m = 7 4 = 3 zeros.
- Ambiguity about which are basic variables.
- (x_1, x_2, x_3, x_6) one choice (x_1, x_2, x_6, x_7) another choice

3.3 Extreme points and BFS

SLIDE 14

- Consider again the extreme point (2, 2, 0, 0, 0, 6, 0)
- How do we construct the basis?

$$\mathcal{B} = \left\{ \left(\begin{array}{c} 1 \\ 1 \\ 0 \\ 0 \end{array} \right), \left(\begin{array}{c} 1 \\ 0 \\ 0 \\ 3 \end{array} \right), \left(\begin{array}{c} 0 \\ 0 \\ 1 \\ 0 \end{array} \right) \right\}$$

SLIDE 15

- Columns in \mathcal{B} are linearly independent.
- Rank $(\mathbf{A}) = 4$
- $|\mathcal{B}| = 3 < 4$
- Can we augment \mathcal{B} ?
- Choices:
 - $-\mathcal{B}' = \mathcal{B} \cup \{A_3\}$ basic variables x_1, x_2, x_3, x_6
 - $-\mathcal{B}' = \mathcal{B} \cup \{A_7\}$ basic variables x_1, x_2, x_6, x_7
 - How many choices do we have?

3.4 Degeneracy and geometry

SLIDE 16

- Whether a BFS is degenerate may depend on the particular representation of a polyhedron.
- $P = \{(x_1, x_2, x_3) \mid x_1 x_2 = 0, x_1 + x_2 + 2x_3 = 2, x_1, x_2, x_3 \ge 0\}.$

- n = 3, m = 2 and n m = 1. (1, 1, 0) is nondegenerate, while (0,0,1) is degenerate.
- Consider the representation $P=\left\{(x_1,x_2,x_3) \mid x_1-x_2=0,\ x_1+x_2+2x_3=2,\ x_1\geq 0,\ x_3\geq 0\right\}$. (0,0,1) is now nondegenerate.

3.5 Conclusions

SLIDE 17

- An extreme point corresponds to possibly many bases in the presence of degeneracy.
- A basic feasible solution, however, corresponds to a unique extreme point.
- Degeneracy is not a purely geometric property.

4 Existence of extreme points

SLIDE 18

Note that $P = \{(x_1, x_2) : 0 \le x_1 \le 1\}$ does not have an extreme point, while $P' = \{(x_1, x_2) : x_1 \le x_2, x_1 \ge 0, x_2 \ge 0\}$ has one. Why?

4.1 Definition

SLIDE 19

A polyhedron $P \subset \Re^n$ contains a line if there exists a vector $x \in P$ and a nonzero vector $d \in \Re^n$ such that $x + \lambda d \in P$ for all scalars λ .

4.2 Theorem

SLIDE 20

Suppose that the polyhedron $P = \{x \in \mathbb{R}^n \mid a_i'x \geq b_i, i = 1, ..., m\}$ is nonempty. Then, the following are equivalent:

- (a) The polyhedron P has at least one extreme point.
- (b) The polyhedron P does not contain a line.
- (c) There exist n vectors out of the family a_1, \ldots, a_m , which are linearly independent.

4.3 Corollary

SLIDE 21

- Polyhedra in standard form contain an extreme point.
- Bounded polyhedra contain an extreme point.

4.4 Proof

SLIDE 22

Let $P = \{x \mid Ax = b, x \geq 0\} \neq \emptyset$, rank(A) = m. If there exists a feasible solution in P, then there is an extreme point. Proof

- Let $\mathbf{x} = (x_1, \dots, x_t, 0, \dots, 0)$, s.t. $\mathbf{x} \in P$. Consider $\mathbf{B} = \{\mathbf{A}_1, \mathbf{A}_2, \dots, \mathbf{A}_t\}$
- If $\{A_1, A_2, ..., A_t\}$ are linearly independent we can augment, to find a basis, and thus a BFS exists.
- If $\{A_1, A_2, \ldots, A_t\}$ are dependent

$$d_1 \mathbf{A}_1 + \dots + d_t \mathbf{A}_t = 0 \qquad (d_i \neq 0)$$

• But $x_1 \mathbf{A}_1 + \cdots + x_t \mathbf{A}_t = \mathbf{b}$

$$\Rightarrow (x_1 + \theta d_1) \mathbf{A}_1 + \dots + (x_t + \theta d_t) \mathbf{A}_t = b$$

• Consider $x_j(\theta) = \begin{cases} x_j + \theta d_j & j = 1 \dots t \\ 0 & \text{otherwise.} \end{cases}$

SLIDE 23

Clearly $\mathbf{A} \cdot \mathbf{x}(\theta) = \mathbf{b}$

$$\begin{array}{ll} \text{Let:} & \theta_1 = \max\limits_{d_j > 0} \left\{ -\frac{x_j}{d_j} \right\} & \text{ (if all } d_j \leq 0) \\ & \theta_1 = -\infty) \\ & \theta_2 = \min\limits_{d_j > 0} \left\{ -\frac{x_j}{d_j} \right\} & \text{ (if all } d_j \geq 0) \\ & \theta_2 = +\infty \\ \text{For} & \theta_1 \leq \theta \leq \theta_2 \\ & x(\theta) \geq 0 & \text{ (sufficiently small)} \end{array}$$

SLIDE 24

Since at least one $(d_1, \ldots, d_t) \neq \mathbf{0} \Rightarrow$ at least one from θ_1, θ_2 is finite, say θ_1 . But then $x(\theta_1) \geq 0$ and number of nonzeros decreased.

$$x_j + \theta \cdot d_j \ge 0 \quad \Rightarrow \quad x_j \ge -\theta d_j$$

4.5 Example 3

SLIDE 25

•
$$P = \{x \mid x_1 + x_2 + x_3 = 2 \\ x_1 + x_4 = 1, x_1, \dots, x_4 \ge 0\}$$

•
$$x = \left(\frac{1}{2}, \frac{1}{2}, 1, \frac{1}{2}\right)$$

$$\boldsymbol{B} = \left\{ \left(\begin{array}{c} 1 \\ 1 \end{array} \right), \left(\begin{array}{c} 1 \\ 0 \end{array} \right), \left(\begin{array}{c} 1 \\ 0 \end{array} \right), \left(\begin{array}{c} 0 \\ 1 \end{array} \right) \right\}$$

$$1 \cdot \left(\begin{array}{c} 1 \\ 1 \end{array}\right) - \left(\begin{array}{c} 1 \\ 0 \end{array}\right) + 0 \cdot \left(\begin{array}{c} 1 \\ 0 \end{array}\right) - \left(\begin{array}{c} 0 \\ 1 \end{array}\right) = \left(\begin{array}{c} 0 \\ 0 \end{array}\right)$$

SLIDE 26

- Consider: $\boldsymbol{x}(\theta) = \left(\frac{1}{2} + \theta, \frac{1}{2} \theta, 1, \frac{1}{2} \theta\right)$ for $-\frac{1}{2} \le \theta \le \frac{1}{2}$.
- $x(\theta) \in P$.
- Note $x(-\frac{1}{2}) = (0, 1, 1, 1)$ and $x(\frac{1}{2}) = (1, 0, 1, 0)$.

5 Optimality of Extreme Points

5.1 Theorem

SLIDE 27

• Consider

min
$$c'x$$

s.t. $x \in P = \{x \in \mathbb{R}^n \mid Ax \ge b\}$.

• P has no line and it has an optimal solution.

Then, there exists an optimal solution which is an extreme point of P.

5.2 Proof Slide 28

- v optimal value of the cost c'x.
- ullet $oldsymbol{Q}$: set of optimal solutions, i.e.,

$$\boldsymbol{Q} = \{\boldsymbol{x} \mid \boldsymbol{c}'\boldsymbol{x} = \boldsymbol{v}, \ \boldsymbol{A}\boldsymbol{x} \geq \boldsymbol{b}\}$$

• $Q \subset P$ and P contains no lines, Q does not contain any lines, hence is has an extreme point x^* .

SLIDE 29

- Claim: x^* is an extreme point of P.
- Suppose not; $\exists y, w \neq x^*$: $x^* = \lambda y + (1 \lambda)w$, $y, w \in P$, $0 < \lambda < 1$.
- $v = c'x^* = \lambda c'y + (1 \lambda)c'w$

$$\bullet \quad \begin{array}{c} c'y \geq v \\ c'w \geq v \end{array} \right\} \Rightarrow c'y = c'w = v \Rightarrow y, w \in Q$$

• $\Rightarrow x^*$ is <u>NOT</u> an extreme point of Q, CONTRADICTION.

6 Representation of Polyhedra

6.1 Theorem

Slide 30

A nonempty and bounded polyhedron is the convex hull of its extreme points.

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.