15.081J/6.251J Introduction to Mathematical Programming

Professor: Dimitris Bertsimas

Structure of Class 1 SLIDE 1 • Formulations: Lec. I • Geometry: Lec. 2-4 • Simplex Method: Lec. 5-8 • Duality Theory: Lec. 9-11 • Sensitivity Analysis: Lec. 12 • Robust Optimization: Lec. 13 • Large scale optimization: Lec. 14-15 • Netmork Flows: Lec. 16-17 • The Ellipsoid method: Lec. 18-19 • Interior point methods: Lec. 20-21 • Semidefinite optimization: Lec. 22 ■ Discrete Optimization: Lec. 24-25 Requirements SLIDE 2 • Homemorkn: 30% • Midterm Exam: 30% • Final Exam: 40% • Important tic braker: contributions to class Use of CPLEX for solving optimization problems **Lecture Outline** 3

• History of Optimization

• Examples of Formulations

• Where LOPs Arise?

4 History of Optimization

Fermat, 1638: Newton, 1670

$$\min f(x) \qquad x: \text{ scalar}$$

$$\frac{df(x)}{dx} = 0$$

Euler, 1755

$$\min f(x_1, \dots, x_n)$$
$$\nabla f(\boldsymbol{x}) = 0$$

Lagrange, 1707

$$\min f(x_1, \dots, x_n)$$

s.t. $g_k(x_1, \dots, x_n) = 0$ $k = 1, \dots, m$

Euler, Lagrange Problems in infinite dimensions, calculus of variations.

5 Nonlinear Optimization

5.1 The general problem

 $\min_{\mathbf{s.t.}} f(x_1, \dots, x_n)$ $\mathbf{s.t.} g_1(x_1, \dots, x_n) \le 0$

minimize $3x_1 + x_2$

$$g_m(x_1,\ldots,x_n)\leq 0.$$

6 What is Linear Optimization?

6.1 Formulation

 $\begin{array}{c} \text{subject to} \quad x_1 + {}_{21.2} \geq 2 \\ 2x_1 + x_2 \geq 3 \\ x_1 \geq {}_{0.1.2} \geq \mathbf{0} \end{array}$ $c = \left(\begin{array}{c} 3 \\ 1 \end{array} \right), \quad \boldsymbol{x} = \left(\begin{array}{c} x_1 \\ x_2 \end{array} \right), \quad \boldsymbol{b} = \left(\begin{array}{c} 2 \\ 3 \end{array} \right), \quad \boldsymbol{A} = \left[\begin{array}{c} 1 & 2 \\ 2 & 1 \end{array} \right]$ $\begin{array}{c} \text{minimize} \quad c'\boldsymbol{x} \\ \text{subject to} \quad \boldsymbol{A}\boldsymbol{x} \geq \boldsymbol{h} \\ \boldsymbol{x} \geq \boldsymbol{0} \end{array}$

SLIDE 4

SLIDE 5

7 History of LO

7.1 The pre-algorithmic period

SLIDE 7

Fourier, 1826 Method for solving system of linear inequalities.

de la Vallée Poussin simplex-like method for objective function with absolute values.

Kantorovich, Koopmans, 1930s Formulations and solution method

von Neumann, 1928 game theory, duality.

Farkas, Minkowski, Carathéodory, 1870-1930 Foundations

7.2 The modern period

SLIDE 8

George Dantzig, 1047 Simplex method

1950s Applications.

1960s Large Scale Optimization.

1970s Complexity theory.

1979 The ellipsoid algorithm.

1980s Interior point algorithms.

1990s Semidefinite and conic optimization.

2000s Robust Optimization.

8 Where do LOPs Arise?

8.1 Wide Applicability

SLIDE 9

■ Transportation

Air traffic control, Crew scheduling, Movement of Truck Loads

- Telecommunications
- Manufacturing
- Medicine
- Engineering
- Typesetting (TeX, LaTeX)

9 Transportation Problem

9.1 Data Slide 10

- \blacksquare m plants. n warehouses
- s_i supply of ith plant, $i = 1 \dots m$
- d_j demand of jth warehouse, $j = 1 \dots n$
- c_{ij} : cost of transportation $i \to j$

9.2 Decision Variables

9.2.1 Formulation Slide 11

 $x_{ij} = \text{number of units to send } i \rightarrow j$

$$\min \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij}$$
s.t.
$$\sum_{i=1}^{m} x_{ij} = d_{j} \qquad j = 1 \dots n$$

$$\sum_{j=1}^{n} x_{ij} = s_{i} \qquad i = 1 \dots m$$

$$x_{ij} \ge 0$$

10 Sorting through LO

SLIDE 12

- Given n numbers c_1, c_2, \ldots, c_n ;
- The order statistic $c_{(1)}, c_{(2)}, \ldots, c_{(n)}$: $c_{(1)} \le c_{(2)} \le \ldots \le c_{(n)}$;
- Use LO to find $\sum_{i=1}^k c_{(i)}$.

min
$$\sum_{i=1}^{n} c_i x_i$$
s.t.
$$\sum_{i=1}^{n} x_i = k$$

$$0 \le x_i \le 1 \qquad i = 1, \dots, n$$

11 Investment under taxation

- You have purchased s_i shares of stock i at price q_i , i = 1, ..., n
- Current price of stock i is p_i

- You expect that the price of stock i one year from now will be r_i
- You pay a capital-gains tax at the rate of 30% on any capital gains at the time of the sale.
- You want to raise C amount of cash after taxes.
- You pay 1% in transaction costs
- Example: You sell 1.000 shares at \$50 per share; you have bought them at \$30 per share: Net cash is:

SO x
$$1.000 - 0.30$$
 x (SO $- 30$) x 1,000
 $-0.01 \times 50 \times 1,000 = 843.500$

11.1 Formulation

SLIDE 14

$$\max \sum_{\substack{i=1\\n}}^{n} r_i(s_i - x_i)$$
s.t.
$$\sum_{\substack{i=1\\0 \le x_i \le s_i}}^{n} p_i x_i - 0.30 \sum_{i=1}^{n} (p_i - q_i) x_i - 0.01 \sum_{i=1}^{n} p_i x_i \ge C$$

12 Investment Problem

SLIDE 15

- Five investment choices A, B, C. D. E
- A, C. and D are available in 1993.
- B is available in 1994.
- E is available in 1995.
- Cash carns 6% per year.
- S1.000.000in 1993.

12.1 Cash Flowper Dollar Invested

	A	В	C	D	E
1993	-1.00	n	-1.00	-1.00	0
1994	+0.30	-1.00	+1.10	0	0
1995	+1.00	+0.30	0	0	-1.00
1996	0	+1.00	0	+1.75	+1.40
LIMIT	\$500,000	NONE	\$500,000	NONE	8750,000

12.2 Formulation

12.2.1 Decision Variables

SLIDE 17

- \blacksquare A,...E: amount invested in \$ millions
- $Cash_t$: amount invested in cash in period t, t = 1, 2, 3

$$\begin{array}{ll} \max & 1.06Cash_3 + 1.00B + 1.75D + 1.40E \\ \text{s.t.} & A + C + D + Cash_1 \leq 1 \\ & Cash_2 + B \leq 0.3A + 1.1C + 1.06Cash_1 \\ & Cash_3 + 1.0E \leq 1.0A + 0.3B + 1.06Cash_2 \\ & A \leq 0.5, \quad C \leq 0.5, \quad E \leq 0.75 \\ & A, \ldots, E \geq 0 \end{array}$$

• Solution: A = 0.5M, B = 0, C = 0, D = 0.5M, E = 0.659M, $Cash_1 = 0$, $Cash_2 = .15M$, $Cash_3 = 0$; Objective: 1.7976M

13 Manufacturing

13.1 Data

SLIDE 18

- n products, m raw materials
- c_j : profit of product j
- b_i : available units of material i.
- a_{ij} : # units of material i product j needs in order to be produced.

13.2 Formulation

13.2.1 Decision variables

SLIDE 19

 $x_j =$ amount of product j produced.

$$\max \sum_{j=1}^{n} c_j x_j$$
s.t.
$$a_{11}x_1 + \dots + a_{1n}x_n \le b_1$$

$$a_{m1}x_1 + \dots + a_{mn}x_n \le b_m$$

$$x_j \ge 0, \qquad j = 1 \dots n$$

14 Capacity Expansion

14.1 Data and Constraints

SLIDE 20

 D_t : forecasted demand for electricity at year t

 E_t : existing capacity (in oil) available nt t

 c_t : cost to produce 1MW using coal capacity

 $n_{\bar{t}}$: cost to produce 1MW using nuclear capacity

- No more than 20% nuclear
- Coal plants last 20 years
- Nuclear plants last 15 years

14.2 Decision Variables

SLIDE 21

 x_t : amount of <u>coal</u> capacity brought on line in year t.

 y_t : amount of <u>nuclear</u> capacity brought on line in year t.

 w_t : total <u>coal</u> capacity in year t.

 z_t : total <u>nuclear</u> capacity in year t.

14.3 Formulation

SLIDE 22

$$\begin{aligned} & \min & & \sum_{t=1}^{T} c_t x_t + n_t y_t \\ & \text{s.t.} & & w_t = \sum_{s=\max(0,t-19)}^{t} x_s, \quad t = 1 \dots T \\ & & z_t = \sum_{s=\max(0,t-14)}^{t} y_s, \quad t = 1 \dots T \\ & & w_t + z_t + E_t \geq D_t \\ & & z_t \leq 0.2 (w_t + z_t + E_t) \\ & & x_t, y_t, w_t, z_t \geq 0. \end{aligned}$$

15 Scheduling

15.1 Decision variables

- Hospital wants to mnke weekly nightshift for its nurses
- D_j demand for nurses, j = 1...7
- Every nurse works 5 clays in a row

• Goal: hire minimum number of nurses

Decision Variables

 x_i : # nurses starting their week on day j

15.2 Formulation

16 Revenue Management

16.1 The industry

• Deregulation in 1978

• Prior to Deregulation

- Carriers only allowed to fly certain routes. Hence airlines such as Northwest. Eastern, Southwest, etc.
- Fares determined by Civil Aeronautics Board (CAB) based on mileage and other costs (CAB no longer exists)

Slide 26

SLIDE 25

Post Deregulation

- anyone can fly, anywhere
- fares determined by carrier (and the market)

17 Revenue Management

17.1 Economics

SLIDE 27

- Huge sunk and fixed costs
- Very low variable costs per passenger (\$10/passenger or less)
- Strong economically competitive environment
- Near-perfect information and negligible cost of information
- Highly perishable inventory
- Result: Multiple fares

18 Revenue Management

18.1 Data Slide 28

- n origins. n destinations
- I hub
- 2 classes (for simplicity), (2-class. Ti-class
- \blacksquare Revenues r_{ij}^Q, r_{ij}^Y
- Capacities: C_{i0} , i = 1, ..., n; C_{0j} , j = 1, ..., n
- \blacksquare Expected demands: $D_{ij}^Q,\,D_{ij}^Y$

18.2 LO Formulation

18.2.1 Decision Variables

SLIDE 29

• Q_{ij} : #of Q-class customers we accept from i to j

■ Y_{ij} : # of Y-class customers we accept from i to j

maximize
$$\sum_{i=0}^{n} r_{ij}^{Q} Q_{ij} + r_{ij}^{Y} Y_{ij}$$
subject to
$$\sum_{j=0}^{n} (Q_{ij} + Y_{ij}) \le C_{i0}$$

$$\sum_{i=0}^{n} (Q_{ij} + Y_{ij}) \le C_{0j}$$

$$0 \le Q_{ij} \le D_{ij}^{Q}, \quad 0 \le Y_{ij} \le D_{ij}^{Y}$$

19 Revenue Management

19.1 Importance

Robert Crandall, former CEO of American Airlines:

SLIDE 30

We estimate that RM has generated \$1.4 billion in incremental revenue for American Airlines in the last three years alone. This is not a one-time benefit. We expect RM to generate at least \$500 million annually for the foresecable future. As we continue to invest in the enhancement of DINAMO we expect to capture no even larger revenue premium.

20 Messages

20.1 How to formulate?

SLIDE 31

- 1. Define your decision variables clearly.
- 2. Write constraints and objective function.
- 3. No systematic method available

What is a good LO formulation?

A formulation with <u>a small</u> number of variables and constraints, and the matrix A is sparse.

21 Nonlinear Optimization

21.1 The general problem

SLIDE 32

min
$$f(x_1, ..., x_n)$$

s.t. $g_1(x_1, ..., x_n) \le 0$
 $g_m(x_1, ..., x_n) \le 0$.

22 Convex functions

SLIDE 33

- $\mathbf{f}: S \longrightarrow R$
- For all $x_1, x_2 \in S$

$$f(\lambda x_1 + (1 - \lambda)x_2) \le \lambda f(x_1) + (1 - \lambda)f(x_2)$$

■ $f(\mathbf{z})$ concave if $-\mathbf{f}(\mathbf{z})$ convex.

23 On the power of LO

23.1 LO formulation

min
$$f(x) = maxi$$
, $d_k x + c_k$
 $s.t.$ $Az \ge b$
min z
 $s.t.$ $Ax \ge b$
 $d_k'x + c_k \le z$ $\forall k$

24 On the power of LO

24.1 Problems with |.|

Slide 35

$$\begin{array}{ll}
\min & \sum c_j |x_j| \\
\text{s.t.} & \mathbf{A} \mathbf{x} \ge \mathbf{b}
\end{array}$$

Idea: $|x| = \max\{x, -x\}$

$$\begin{array}{ll} \min & \sum c_j z_j \\ \text{5.t.} & \boldsymbol{A} \boldsymbol{x} \geq \boldsymbol{b} \\ & x_j \leq z_j \\ & -x_j \leq z_j \end{array}$$

Message: Minimizing Piecewise linear convex function can be modelled by LO

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.