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Using H2 Optimization1 

This lecture provides some useful hints on ways to apply H2 optimization. 

4.1 Closed Loop Properties of H2 Optimal Systems 

Recall that for the standard setup of minimizing the closed loop H2 norm from w to z in 

ẋ = Ax + B1w + B2u, (4.1) 

z = C1x + D12u, (4.2) 

y = C2x + D21w, (4.3) 

the optimal LTI controller is given by 

u = K ̂x, (4.4) 

ˆ̇x = Aˆ x − y), (4.5)x + B2u + L(C2 ̂

where K is such that 

|C1p + D12q|
2 + 2p Pfi(Ap + B2q) = (q − Kp)�Rz(q − Kp), (4.6) 
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D�A + B2K is a Hurwitz matrix, Rz = 
12
D12, and Pf i = P � � 0 is a symmetric matrix. f i 

Similarly, L is such that 

|B
1

� p + D� 
21
q|2 + 2p Pse(A

� p + C
2

� q) = (q − L� p)�Ry (q − L� p), (4.7) 

where A + LC2 is a Hurwitz matrix, Ry = D21D
� 
21

, and Pse = P � � 0 is a symmetric se 

matrix. 
In this section, we investigate the closed loop properties of H2 optimal feedback sys­

tems which can be derived from these characterizations. 

4.1.1 Closed Loop Poles 

The closed loop system dynamics can be written in terms of the new states e = x − ̂x and 
x̂: 

ė = (A + LC2)e + (B1 + LD21)w, (4.8) 

ˆ̇x = (A + B2K)x̂ − LC2e − LD21w. (4.9) 

In particular, this implies that the closed loop poles are eigenvalues of A + B2K and 
A + LC2. 

It turns out that identities (4.6), (4.7) can be used to get some insight into locations 
of these poles. Indeed, eigenvalues of A + B2K are zeros of 

�u(s) = I − K(sI − A)−1B2, 

because 

det(sI − A − B2K) = det(sI − A) det(I − B2K(sI − A)−1) = det(sI − A)−1 det(�u(s)), 

where we have use the fact that 

det(I + ab) = det(I + ba) 

for every pair of matrices a, b of compatible dimensions (and the identity matrices on both 
sides may have different dimensions). Similarly, eigenvalues of A + LC2 are zeros of 

)−1C ��y (s) = I − L�(sI − A�

2
. 

On the other hand, noting that (4.6) will hold for complex vectors p, q, as long as it is 
modified to a Hermitian norm identity 

|C1p + D12q|
2 + 2Re{p Pf i(Ap + B2q)} = (q − Kp)�Rz (q − Kp), (4.10) 
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where � denotes Hermitian conjugation, and substituting 

p = (j�I − A)−1B2q 

yields the identity 
P12(−s)

T P12(s) = �u(−s)
T Rz �u(s) (4.11) 

for all s = j� on the imaginary axis (except, strictly speaking, possible eigenvalues of 
A). Since(4.11) is an identity between rational functions, its validity on the imaginary 
axis implies its validity for all s. In particular, zeros of det(�u(s)) (i.e. the eigenvalues 
of A + B2K) are the stable zeros of det{P12(−s)

T P12(s)}. 
A similar derivation shows that zeros of det(�y (s)) (i.e. the eigenvalues of A + LC2) 

are the stable zeros of det{P21(s)P21(−s)
T }. 

For example, in a special case when the optimization setup is defined by a SISO plant 

P0(s) = C(sI − A)−1B, 

where (A, B) is controllable and (C, A) is observable, according to 

ẋ = Ax + B(w1 + u), (4.12) 

z1 = Cx, (4.13) 

z2 = rz u, (4.14) 

y = Cx + ry w2, (4.15) 

where w = [w1; w2] is the total disturbance, and rz , ry are positive coefficients, the closed 
loop poles of H2 optimal feedback system are the stable zeros of 

�u(s) = r 2 + P0(s)P0(−s)z 

and 
2�y (s) = ry + P0(s)P0(−s). 

In particular, one can now apply the standard properties of the root locus to predict the 
asymptotic behavior of the poles as rz and ry converge to zero or infinity. For example, 
when rz is small, some eigenvalues of A + B2K are close to the stable zeros of P0(s) and 
to the mirror (with respect to the imaginary axis) images of unstable zeros of P0(s), with 
the rest of eigenvalues approaching infinity. Similarly, when rz is large, the eigenvalues of 
A+BK2 approximate stable eigenvalues of A and the mirror images of unstable eigenvalues 
of A. 
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4.1.2 Closed Loop Stability Robustness 

Is stability of the closed loop be preserved when the optimal gains K, L are replaced by 
some other gains? Optimal H2 controllers frequently have plenty of robustness this way, 
though this usually does not transform into real robustness (which is caused by errors in 
modeling the outside world, not the controller’s coefficients). 

Consider again the special feedback optimization setup (4.12)-(4.15). The correspond­
ing solutions Pfi and Pse of Riccati equations satisfy 

2K � 2Pfi(A + BK) + (A + BK)�Pfi = −C �C − r K, B�Pfi = −r zK, (4.16)z 

2 2L� ,Pse(A
� + L�C �) + (A� + L�C �)Pse = −BB� − r y LL

� , C2Pse = −r y (4.17) 

and hence both are positive definite. Moreover (4.16) implies that 

Pfi(A + BzK) + (A + BzK)�Pfi = −C �C − r 2K �(1 + 2Re(z))Kz

is negative definite for every complex number z with Re(z) > −0.5. Therefore, all eigen­
values of A + BzK have negative real part for Re(z) > −0.5. Similarly, A + LzC2 is a 
Hurwitz matrix for Re(z) > −0.5. 

This observation was originally used to claim that the optimal H2 feedback has a 50 
percent gain margin and a 60 percent phase margin. In reality, this only holds for the full 
information or state estimation problems. Indeed, K enters the formula for the output 
feedback controller in two places: in defining the control output u = K ̂x, and in defining 
the state observer dynamics 

ˆ̇x = (A + B2K + LC2)x̂ − Ly. 

While an unknown controller gain uncertainty can be combined with K in the first ap­
pearance, in most situations one cannot do the same in the second appearance. The 
situation with the observer gain is similar. All the controversy around the originally 
claimed “robustness” of optimal H2 control has served as a catalyst for developing H-
Infinity optimization and mu-synthesis. 


