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Analysis of Uncertain Systems1 

In this lecture enhanced techniques of stability and robustness analysis of LTI systems 
are developed by combining the ideas of small gain theorem, zero exclusion principle, and 
relaxations in quadratic programming 

13.1 Motivation and Basic Definitions 

Basic principles of LTI system robustness analysis are presented in this subsection. 

13.1.1 Small Gain Theorem/Circle Criterion 

The circle criterion can be applied to systems which are non-linear, time-varying, infinite-
dimensional, etc. Consider the feedback interconnection from Figure 13.1, where G and 
Σ are arbitrary causal systems with finite L2 norms ≡G≡ and ≡Σ≡ respectively, such that 
the feedback interconnection is well-posed (i.e. for any input signals f1, f2 the feedback 
equations have a solution z1, z2 which depends causally on z1, z2). The following theorem 
was proven in previous lectures. 

Theorem 13.1 If ≡Σ≡ · ≡G≡ < 1, the feedback interconnection is stable. 

The small gain condition is a simple but general tool for certifying stability and ro­
bustness of uncertain systems, linear and nonlinear. However, it becomes excessively 

1Version of April 21, 2004 
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f1 � � � � z1G 

� �� f2z2 Σ 

Figure 13.1: setup for the Small Gain Theorem 

conservative when some structural information about Σ is available. Consider, for exam­
ple, the case when G(s) = s/(s2 + s+ 1) and Σ = Σ0 < 0 is a constant negative feedback 
gain. Then ≡G≡ = ≡G≡� = 1, but the feedback system remains stable for arbitrarily 
large values of Σ. Here the additional condition imposed on the structure of Σ (in this 
case, on its phase) yields a much better robustness margin than predicted by the small 
gain theorem. 

13.1.2 Zero Exclusion Principle 

A finite order LTI system is stable if it does not have poles in the closed right half plane 

C+ = {s ≤ C : Re(s) → 0}. 

However, checking the whole C+ for the absense of poles is usually inconvenient, especially 
when the system (and its poles as well) is uncertain. Therefore it is very important to 
establish that analysis of stability of uncertain LTI systems can be based on excluding 
marginal instability. 

Theorem 13.2 Let G = G(s), Σ = Σ(s) be LTI systems with finite L2 gains. Assume 
that 

| det(I − φG(jσ)Σ(jσ))| → γ > 0 for all σ ≤ R, φ ≤ [0, 1]. 

Then the feedback interconnection of G and Σ has finite L2 gain. 

Theorem 13.2 implies the following version of the zero exclusion principle. Let G be a 
stable finite order LTI system with m inputs and n outputs. Let � be a cone of complex 
m-by-n complex matrices, i.e. a closed set such that 

¯ ¯Σ ≤ �, � → 0 implies �Σ ≤ �. 
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f1 � � � � z1G 

Σ� 
� ��z2 f2 

Figure 13.2: a homotopy argument in stability analysis 

The interconnection of G and Σ is stable for any transfer function Σ satisfying the con­
dition Σ(jσ) ≤ � if and only if 

¯ ¯det(I − G(jσ)Σ) ∞= 0 ∩ σ ≤ R � {⊂}, Σ ≤ �. 

13.1.3 Structured Singular Values 

Let � be a cone of complex n-by-m matrices. The structured singular value 

µ = µ(M) = µ(M, �) = µ�(M) 

is defined for any complex m-by-n matrix as the reciprocal of the smallest norm of Σ ≤ � 
such that I − MΣ is not invertible. Here � defines the structure of an uncertain block Σ 
such that Σ(jσ) ≤ D: the smaller � is, the more structure, and the smaller µ(M, �) is 
going to be. 

Note that, when � is the set of all n-by-m matrices (i.e. when there is “no structure”), 
we have 

µ(M, �) = ≡M≡ = δmax(M) 

which explains the term “structured singular value” 
The so-called “complex structured singular value” µC(M) corresponds to the case 

when 
�⎫ ⎢ ⎩ 
⎥ Σ1 0 0 ⎥ 
⎥ ⎥ 
⎥ ⎥ 
⎣� 0 ⎧ ⎦Σ2 

� ⎧

� = 
� . ⎧ : Σi ≤ C . 

⎥� . ⎨ ⎥ 
⎥ ⎥ 
⎥ ⎥ 
⎤ 0 ⎪Σn 

is the set of all complex diagonal matrices. 
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The so-called “real structured singular value” µR(M) corresponds to the case when 
� ⎩⎫ ⎢ 
⎥ �1 0 0 ⎥ 
⎥ ⎥ 
⎥ ⎥ 
⎣� 0 ⎧ ⎦�2 

� ⎧

� = 
� . ⎧ : �i ≤ R . 

⎥� . ⎨ ⎥ 
⎥ ⎥ 
⎥ ⎥ 
⎤ 0 ⎪�n 

is the set of all real diagonal matrices. 
M. Safonov uses notation Km(M, �) = 1/µ(M, �). 

13.1.4 Examples 

For 
� � 
j 100 

M = 
0 j 

we have 
δmax(M) � 100, µC(M) = 1, µR(M) = 0 

If � = {Σ = �I : � ≤ C}, then µ(M, �) is the spectral radius of M (i.e. the largest 
absolute value of an eigenvalue of M). 

⎭� �⎡ � 
1 t 0, t ∞= 0, 

=µR −t 1 1, t = 0. 

In particular, this demonstrates that some versions of µ are discontinuous functions of its 
argument. However, µC(M) can be proven to be a continuous function of M . 

13.1.5 A “Small µ Theorem” 

Consider a feedback interconnection of a given LTI system G(s) and an uncertain LTI 
system Σ(s), where Σ(s) is any stable LTI system such that Σ(jσ) ≤ � for all σ, and 
≡Σ(s)≡� < 1. Then, by the definition of µ(G, �), and by the “zero exclusion principle”, 
the interconnection is stable for any expected Σ(s) if 

¯sup µ�(G) < 1 

¯for any G which can be approximated arbitrarily well by the values of G(jσ). 
For example, in the case of “structured” unmodeled dynamics, shown on Figure 13.3, 

the interconnection is stable and has worst case w0 to z0 gain less than one if and only if 

sup µC(G(jσ)) < 1. 
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Figure 13.3: small complex mu theorem 

13.2 Computation of robustness margins 

In general, µ is difficult to compute exactly (such problems are called “NP hard” by 
computer scientists). In practice, computable upper and lower bounds of µ are used. 
When those bounds are far apart, a “branch and bound” technique is used. 

µ such that ˆAn upper bound of µ is a function ˆ µ(M) → µ(M) for any M . Upper 
bounds of µ give sufficient conditions of stability and robust performance. Lower bounds 
of µ prove that certain systems are not robustly stable. Usually, calculation of a large 
lower bound of µ comes with an example of a destabilizing uncertainty. 

13.2.1 Lower Bounds of µ 

Standard lower bounds for µ are obtained by finding a local minimum in the non-convex 
optimization problem 

λ(ΣM) ≈ max 

where λ(A) is the spectral radius of A (when � is invariant with respect to multiplication 
by complex scalars) or the real spectral radius of A (for the “real” versions of µ). Roughly 
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speaking, the search for low bounds of µ amounds to simulations of the uncertain systems 
with different values of the uncertainty parameters. 

For most common structures �, the search over � can be replaced by the search over 
the unitary elements in �, i.e. such that ΣΣ→ = I. 

For example, for a 3-by-3 matrix M , figuring out whether µR(M) < 1 is equivalent 
to checking that I −MΣ is invertible for any diagonal matrix with elements �i ≤ [−1, 1] 
on the diagonal (i = 1, 2, 3). 

Consider separately the 2 cases: �1 → 0 and �1 ∀ 0. Since 

[0, 1] = 0.5 + 0.5 · [−1, 1], 

[−1, 0] = −0.5 + 0.5 · [−1, 1], 

in each case, the problem can be reduced to checking that µR(M±) < 1, where 

→ →M± = (I ± 0.5Me1e1)
−1M(I − 0.5e1e1) 

e1 is the first basis vector, “+” corresponds to �1 ≤ [0, 1], “−” corresponds to �1 ≤ [−1, 0]. 
For each of M±, we expect that the gap between upper and lower bounds of µ will be 
smaller, since the actual range of �i has been reduced. 

13.2.2 Quadratic Constraints 

Matrix I −MΣ is not invertibe if and only if the system of equations 

y = Mw, w = Σy 

has a non-zero solution (y, w). To show that this is impossible for Σ ≤ �, r≡Σ≡ ∀ 1, we 
start with finding quadratic forms δ = δ(y, w) such that 

δ(y,Σy) → 0 ∩ Σ ≤ �, ≡Σ≡ ∀ 1 

Such conditions are called quadratic constraints describing the relation w = Σy. The 
idea of “describing” uncertainty using quadratic inequalities is the background of most 
robustness criteria. 

Let � be a set of quadratic forms δ(y, w) such that 

δ(y,Σy) → 0 ∩ Σ ≤ �, ≡Σ≡ ∀ 1 

δ(0, w) < 0 for w ∞= 0 

Note that any convex combination of such quadratic forms satisfies the condition as well. 
Define a functional on � by 

J(δ) = inf{r → 0 : δ(Mw, rw) < 0 ∩ w ∞= 0 
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• Functional J is quasi-convex. 

• The infimum of J over � is an upper bound of µ(M,�). 

• The larger �, the better the upper bound. 

This is the idea behind upper bounds of µ. 

13.2.3 Elementary Uncertainty 

Here we derive quadratic constraints for elementary components of uncertainty structures 
Unmodeled Dynamics If w = Σy, where Σ is an arbitrary complex matrix with 

≡Σ≡ ∀ 1, the relation between w and y is described by 

2δ(y, w) = ≡y≡2 − ≡w≡ → 0 

Repeated Real Scalar If w = �y, where � ≤ [−1, 1] is a real number, the relation 
between w and y is described by 

→δ(y, w) = y Dy − w →Dw + 2Re(y →Sw) → 0 

where where D,S are arbitrary matrices such that D = D→ → 0 and S = −S → . 
Quadratic constraints for other elementary uncertainty relations are obtained in a 

similar way. 

13.2.4 An Upper Bound for µ 

Quadratic constraints for a general structured uncertainty are obtained as convex combi­
nations of the “elementary” constraints. 

Let � = {Σ} be the uncertainty structure for which w = Σy means 

r
N 

r; ; y. . .1 
c
M 

c; ; y. . .1 ][ ; yy = y 

r
N 

r; ; w. . .1
c
M 

c; ; w. . .1[ ]; w
w =
 w 

where 
≤ Cn(k), �k ≤ Rr

k 
r
k

r
k 

r
k = �k yw , y , w 

≤ Cm(k) c
k ≤ Cp(k)c

k 
c
k 

c
k= Σk yw , y , w


An upper bound of µ(M,�) is given by the minimal r > 0 such that 

M →DM + MS + S →M < r 2 D̂ 



� 

� 

� 

8 

where 
Ŝ 0 

� 

S = ,
0 0 

D = diag{D1, . . . , DN , d1Im(k), . . . , dM Im(M )} 

D̂ = diag{D1, . . . , DN , d1Ip(k), . . . , dM Ip(M )} 

Ŝ = diag{S1, . . . , SM } 

matrices Dk = → → 0 and Sk = −S → have size n(k)-by-n(k). Optimization of rmin over Dk k 

D, D̂, S is quasi-convex.

The upper bound above was obtained using the quadratic constraint


δ(y,Σy) → 0 ∩ Σ ≤ �, ≡Σ≡ ∀ 1 

where 

N 
r → rδ(y, w) = y r →Dk y r − wkk k Dk wk 

k=1 
r+2Re(y r →Sk wk)k 

M 
c c 2+ di(≡y ≡2 − ≡wk ≡ )k 

k=1 

13.3 Basic Definitions of IQC Analysis 

Integral Quadratic Constraints are used to express some information about subsystems of 
a larger system, in a way that is convenient to use in the analysis of the whole. We will 
start with defining mathematical models of signals, systems, system states, subsystems, 
and IQC. 

13.3.1 Signals 

A signal is a real vector-valued function f : (0,⊂) ∈≈ Rm of time t, 0 < t < ⊂, which 
is square integrable on every finite interval {t} = (0, T ), 0 < T < ⊂. Thus, for our 
purposes, functions such as (t− 1)1/3 or f(t) = exp(t2) are valid models of signals, while 
f(t) = �(t) or f(t) = (t− 1)−1 are not. The set of all m-vector signals will be referred to 

m mas L2,loc. The subset of L2,loc consisting of all signals which are square integrable over the 
minfinite time interval (0,⊂) will be denoted by L2 . 
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By default, a signal is treated as a force-like quantity, i.e. its effect is always defined 
in terms of its integral. Therefore, two signals f1, f2 are considered equal if f1(t) = f2(t) 
for almost all t ≤ (0,⊂), i.e. for all t ≤ (0,⊂) except, possibly, a set of zero Lebesque 
measure. In particular, looking at the value f(t0) of a given signal at a given single 
moment of time t0 ≤ (0,⊂) does not make much sense, unless f(·) has some special 
properties. For example, if it is known that f, g ≤ Lm 

2,loc are related by the condition 
� t2 

f(t2) − f(t1) = g(t)dt 
t1 

for almost all t1, t2 ≤ (0,⊂) (which is a mathematically clean way of saying that df/dt = 
g), then the value of the essential limit 

ess lim f(t) 
t�t0 

can be used as a meaningful interpretation of f(t0). 
While many sources would define signals as functions defined for all t ≤ (−⊂,⊂), 

it is better to avoid this because some system models cannot be traced back in time to 
t = −⊂. For example, the non-zero solutions of the autonomous differential equation 
dx/dt = −x3 cannot be extended backwards in time till t = −⊂. Another such example 
is the model of Brownian motion. 

When f ≤ Lm 
2,loc is a signal, referring to f(t) makes formal sense only for t > 0. For 

convenience, it will be assumed that f(t) = 0 for all t ∀ 0, f ≤ Lm 
2,loc . 

13.3.2 Systems 

At some very general level, the word system means just a relation between signals. Fol­
lowing this observation, a system will be defined as a set of signals of a fixed dimension, 
i.e. as a subset of Lm for some m.2,loc 

A common way of defining systems is by differential equations. For example, the set 
of differential equations 

ẋ(t) = F (x(t), v(t)), w(t) = H(x(t), v(t)), 

where F : Rn × Rm ≈ Rn and H : Rn × Rm ≈ Rk are two given functions can be used 
to refer to an input/output system model Sio defined as the set of all z = [v; w] ≤ Lm+k 

2,loc 
for which there exists x ≤ Ln such that w(t) = H(x(t), v(t)), g(t) = F (x(t), w(t)) is 2,loc 

locally integrable over every interval (t1, t2) with 0 < t1 < t2 < ⊂), and dx/dt = g. 
Alternatively, the equations can refer to a state-space system model Sss defined as the set 
of all z = [v; w; x] ≤ Lm+k+n for which w(t) = H(x(t), v(t)), g(t) = F (x(t), w(t)) is locally 2,loc 
integrable over every interval (t1, t2) with 0 < t1 < t2 < ⊂), and dx/dt = g. 
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13.3.3 System State 

By its meaning, the current system state determines the set of all possible extensions 
of system signals into past or future. For a general system S, it is more reasonable to 
introduce the notion of two signals z1, z2 ≤ S defining the same state of S at a given time 
instance T > 0. 

Let S ∪ Lm 
2,loc be a system. Two signals z1, z2 ≤ S are said to commute in S at time 

T ≤ (0,⊂) if h1, h2 ≤ S, where 

z1(t), t < T, z2(t), t < T, 
h1(t) = h2(t) = 

z2(t), t > T, z1(t), t > T. 

In other words, two signals commute if their pasts and futures can be interchanged without 
violating the underlying system constraints. Two signals z1, z2 ≤ S are said to define same 
state of S at time T ≤ (0,⊂) if the set of all signals g ≤ S which commute with z1 at 
time T equals the set of all signals g ≤ S which commute with z2 at time T . 

Example 13.1 Let 
S = {z = [f ; g] ≤ L2 df/dt = g}2,loc : 

be the model of a pure integrator. Note that f must be continuous for every z = [f ; g] ≤ S. 
Therefore, if two signals z1 = [f1; g1] ≤ S and z2 = [f2; g2] ≤ S commute in S at time T 
then f1(T ) = f2(T ) (otherwise the composite of f1 and f2 will be discontinuous at time 
T ). On the other hand, by inspection, the composites h1 and h2 of z1 and z2 will belong 
to S as long as f1(T ) = f2(T ). Therefore z1 = [f1; g1] ≤ S and z2 = [f2; g2] ≤ S define 
same state of S at time T if and only if f1(T ) = f2(T ). 

In other words, it would be correct to declare f(T ) to be the state of z = [f ; g] ≤ S 
in S at time T . However, declaring f(T )3 − exp(T ) as the state at time T would be an 
equally valid choice. 

13.3.4 Subsystems 

Typically, a subsystem of a given system is defined by a subset of constraints describing 
the whole behavior. In terms of sets, this means that the signal set defining a system must 
be a subset of the signal set defining its subsystem. It turns out, however, that the notion 
of a subsystem must satisfy some additional properties to be useful in system analysis. 

Let S ∪ S0 ∪ Lm 
2,loc. S0 is called a subsystem of S if every two signals z1, z2 ≤ S which 

define same state of S at time T > 0 also define same state of S0 at that time. 
For example, system 

S0 = {z = [y; f ] ≤ L2 dy/dt = df/dt}2,loc : 
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is a subsystem of 

S1 = {z = [y; f ] ≤ L2 dy/dt = df /dt, f = 0},2,loc : 

but is not a subsystem of 

S2 = {z = [y; f ] ≤ L2 dy/dt = df /dt, f = y}.2,loc : 

One interpretation of this example is that the feedback interconnection of systems dy/dt = 
df /dt and f = 0 is well-posed, but the feedback interconnection of systems dy/dt = df /dt 
and f = y is not well-posed. 

13.3.5 Integral Quadratic Constraints 

Let δ be a quadratic form on Rm, i.e. 

δ(z) = z →�z ∩ z ≤ Rm , 

where � = �→ is a symmetric m-by-m matrix. System S ∪ Lm is said to satisfy the IQC 2,loc 

defined by δ if there exists a function V : S × (0, ⊂) ≈ R such that 

(a) V (z1, T ) = V (z2, T ) whenever z1 and z2 define same state of S at time T > 0; 

(b) the inequality 
lim inf V (z, T ) → 0 (13.1)

T �� 

holds for all z ≤ S which are square integrable over (0, ⊂); 

(c) the inequality 
� t2 

δ(z(t))dt → V (z, t2) − V (z, t1) (13.2) 
t1 

holds for all t2 > t1 > 0, 

in which case one can write δ → V̇ as a shortcut. 
In the definition of IQC, (a) means that V (z, T ) depends only on the state defined 

by z at time T ; (b) means (informally) that V is non-negative when the system state 
“approaches zero”; (c) is the actual IQC inequality declaring that δ(z(T )) is an upper 
bound of the time derivative of V (z, t) at t = T . 
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Example 13.2 Let ψ : R ∈≈ R be a monotonic function such that ψ(0) = 0. For a fixed 
a > 0 define 

� ay1 
�(y) = ψ(φ )dφ. 

a 0 

Consider system 

S = {z = [v; w; x] ≤ L3 w = ψ(v), dx/dt = −ax + v}.2,loc : 

Let 
V (z, T ) = �(x(T )) where z = [v; w; x] ≤ S. 

It is easy to check that V satisfies conditions (a),(b) in the definition, and (c) holds for 
δ([v; w; x]) = w(v − ax). Therefore, w(v − ax) → V̇ is a valid IQC describing S. 

Further analysis of the situation suggests that the IQC actually describes the memory-
less relation between v and w = ψ(v). The additional variable x is defined by a first-order 
LTI transformation of v. In general, it is usually quite beneficial to consider such LTI 
“extensions” of a given system model, since it allows one to produce more of useful IQC 
for a given relation. A shortcut for the IQC derived above is 

⎭ ⎡ 
s 

→ ˙w v → V , 
s + a 

where s v denotes x, emphasizing that the IQC describes a relation between v and 
s+a 

w = ψ(v), while x serves as an auxiliary variable. 
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13.4 Basic Theorems of IQC Analysis 
mTypically, IQC analysis of a system S = {z} ∪ L2,loc comes through three different phases. 

In the first phase, IQC modeling, a set of IQC 

δk(z) → V̇k, k = 1, 2, . . . 

is derived for S. Since an IQC for a subsystem holds automatically for the whole system, it 
helps to recognize subsystems of S for which some IQC have already been established. For 
example, extensive sets of IQC are available for LTI models, memoryless models, uncertain 
models, etc. Note that, in order to get a rich set of IQC, it is usually necessary to re-define 
z (and hence S) by introducing auxiliary variables defined as LTI transformations of the 
original components of z ≤ S. To complete an IQC model, two linear functions of z, 
f = Linz and y = Loutz, are to be designated respectively as the external noise and the 
transient response to it (for autonomous systems, the natural choice would be f = 0). 

In the second phase, IQC feasibility analysis, one tries to find a convex combination 
� � 

δ(z) = ck δk (z), ck → 0, ck > 0 
k k 

of the quadratic forms δk which satisfies the inequality 

2 2δ(z) ∀ ρ|f |2 − |y| = ρ|Linz|
2 − |Loutz| ∩ z ≤ Rm , 

where ρ is as small as possible. If such convex combination does not exist, the attempt at 
IQC analysis is declared a failure (which possibly indicates that a larger set of IQC should 
have been used). Otherwise, the IQC model is declared feasible, and analysis comes into 
the third phase, IQC post-feasibility analysis when one has to determine whether the 
corresponding convex combination 

V = ck Vk , 
k 

is non-negative. Note that V → 0 would imply the L2 gain inequality 

|y(t)|2dt ∀ V (z, T ) + ρ |f(t)|2dt, 
T T 

which can be interpreted as input/output stability of S, while having V (z, T ) < 0 for 
some z ≤ S such that f(t) = 0 for t > T implies 

lim inf V (z, φ) < 0, 
T �� � >T 
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which can be interpreted as the system state not converging to zero despite the disturbance 
being identically zero after time T . 

The general mathematical statements presented in this section are used in the three 
phases of IQC analysis. 

13.4.1 IQC for LTI Relations 

Almost any system model includes some LTI relations between signals. Therefore, it 
is important to know which IQC are implied by LTI relations. The following theorem 
answers this question. 

Let A and B be real matrices of dimensions n-by-n and n-by-k. Let 

dx 
SA,B = {z = [x; u] ≤ Ln+k : = Ax + Bu 2,loc dt 

be the LTI system defined by A and B. Let � = �→ be a real symmetric (n+ k)-by-(n+ k) 
matrix, and δ(x, u) = δ(z) = z →�z for z = [x; u]. 

Theorem 13.3 Assume that the pair (A, B) is stabilizable. Then IQC δ(z) → V̇ holds 
on SA,B if and only if there exists a symmetric real n-by-n matrix P = P → such that 

δ(x, u) → 2x →P (Ax + Bu) ∩ x ≤ Rn , u ≤ Rk . (13.3) 

Since the expression 2x→P (Ax + Bu) equals the derivative of VP (x) = x→P x subject to 
the system equation dx/dt = Ax + Bu, the theorem has the following interpretation: an 
IQC δ → V̇ holds on SA,B for some storage function V if and only if the IQC δ → V̇P 

(with the same δ) holds for some quadratic storage function VP . 

Proof The sufficiency of (13.3) follows from the unsurprising observation that two signals 
z1 = [x1; u1] and z2 = [x2; u2] define same state of SA,B at time T > 0 if and only if 
x1(T ) = x2(T ). Hence VP (z, T ) = x(T )→P x(T ) is a function of the state of z = [x; u] 
at time T . In addition, if both z = [x; u] ≤ SA,B is square integrable over (0, ⊂) then 
x(T ) ≈ 0 as T ≈ ⊂. Hence δ → V̇P is a valid IQC for SA,B . 

To prove the necessity of (13.3), note that an IQC δ → V̇ implies that 

δ(z)dt → −V (z, T ) = −V (x(T ), T ) 
T 

whenever z = [x; u] ≤ SA,B is square integrable over (0, ⊂). Hence the infimum 

U(a) = inf{ δ(x, u)dt : [x; u] ≤ SA,B � L
n+k , x(T ) = a}2 

T 
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(which, by the time invariance of the system equations, does not depend on T > 0) is 
finite for all a ≤ Rn . According to the Bellman principle of dynamic programming, the 
function Ṽ (a) = −U(a) satisfies 

t2 

δ(x, u)dt → Ṽ (x(t2)) − Ṽ (x(t1)) 
t1 

for all z = [x; u] ≤ SA,B . On the other hand, U = U(a), as an infimum of a quadratic 
form on a vector space subject to the linear constraint x(T ) = a must be a quadratic form 
with respect to the parameter a ≤ Rn . Hence Ṽ (a) = a→P a for some P = P →, and (13.3) 
follows. 

13.4.2 The KYP Lemma 

The Kalman-Popov-Yakubovich (KYP) Lemma answers the following question: given 
A, B, and �, defined as in the previous subsection, when does there exist a symmetric 
real P = P → such that (13.3) holds? More precisely, the lemma reduces the question to a 
frequency-domain equivalent, thus establishing a link between state-space and frequency 
domain viewpoints. 

Note that the the definition δ(z) = z →�z also applies to complex vectors z ≤ Cn+k , 
where → stands for Hermitian conjugation. 

Theorem 13.4 Assume that the pair (A, B) is stabilizable, there exists at least one s ≤ C 
such that sI − A is invertible, and the matrix �s = �→ of the Hermitian form s 

δ̃s(u) = δ((sI − A)−1Bu, u) = u →�su 

is non-singular as well. Then (13.3) holds for some real matrix P = P → if and only if 

δ(x, u) → 0 for all x ≤ Cn , u ≤ Ck , σ ≤ R : jσx = Ax + Bu. (13.4) 

Possibly the most important theorem of linear system theory, the KYP Lemma (called 
“positive real lemma” in some versions) has many different proofs, all of which are too 
long to include in this text. However, the necessity of (13.4) follows immediately from 
the observation that δP (x, u) = 0 for all x, u such that jσx = Ax + Bu. One proof of 
sufficiency follows the path of the proof of Theorem 13.3: first, the Parceval formula is 
used to show boundedness of some infimum in a linear-quadratic optimization problem, 
and then P emerges as the matrix of the quadratic form defining the dependence of the 
infimum on the initial conditions. 

In this lecture, the KYP lemma will be used to give a convenient frequency domain 
interpretation of IQC feasibility analysis for a simplified system analysis setup described 
in the next subsection. 
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13.4.3 IQC Analysis in the Frequency Domain 

Consider the typical system analysis setup shown on Figure 13.4. Here G is a known 

� 

xG� G(s) 

y 


�� f 

v 

Σ 

w 

Figure 13.4: 

stable finite order LTI model with input w, state xG, and output y, described by the 
equations 

ẋG(t) = AGxG(t) + BGw(t), y(t) = CGxG(t) + DGw(t) (13.5) 

with known real coefficient matrices AG, BG, CG, DG. Signal f model external disturbance, 
and Σ represents a relation between v and w which completes the constraints imposed on 
system dynamics. 

Assume that an IQC 
δ�(xL, vL, wL) → V̇� (13.6) 

holds for the relation between v and w, where xG is the auxiliary signal introduced as 
the state of a stable LTI system L with inputs v and w, as shown on Figure 13.5. The 
equations of L are given by 

Lv(t) + Bw ẋL(T ) = ALxL(t) + Bv
L w(t), xL(0) = 0, (13.7) 



�� 
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xG� G(s) 


 f 

v 

xL� L(s) Σ 

w 

Figure 13.5: 

where AL, B
v 
L, B

w are known real matrices. L 

Thus, the extended system model S = {z} will have 

z = [v; w; xG; xL], 

constrained by the known LTI relations (13.5),(13.7), and by the constraints imposed by 
Σ. One can consider an IQC model of S with 

f = v − CGxG − DGw, y = v. 

Note that, while the choice of f is rigidly dictated by the original setup, the definition 
of y is quite arbitrary here. One IQC for S is given by (13.6), which is considered an 
abstraction of Σ. On the other hand, the IQC for the linear relations (13.5),(13.7) are 
given by Theorem 13.3 in the form 

δP (xG, xL, v, w) → V̇P , 

where 
� �→ � � 
xG AGxG + BGw 

δP (xG, xL, v, w) = 2 P
ALxL + Bv

L w
, 

xL Lv + Bw 
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� �→ � � 
xG(T ) xG(T )

VP (z, T ) = 
xL(T ) 

P
xL(T ) 

, 

and P = P → is an arbitrary symmetric real matrix of appropriate dimensions. 
Feasibility analysis of the IQC model described here means finding a symmetric matrix 

P such that 

2δ�(xL, v, w) + δP (xG, xL, v, w) ∀ ρ|v − CGxG −DGw|
2 − |v|

for all real vectors xG, xL, v, w, while minimizing the value of ρ. According to the KYP 
Lemma (Theorem 13.4), it is sufficient to check that the inequality holds when xG, xL, v, w 
are complex vectors satisfying the equations 

Lv + BwjσxG = AGxG + BGw, jσxL = ALxL + Bv
L w, (13.8) 

for all σ ≤ R (and, for at least one value of σ ≤ R, the inequality must hold strictly). 
Note that, subject to (13.8), 

� �→ � � 

CGx + DGw = G(jσ)w, δP (xG, xL, v, w) = 0, δ�(xL, v, w) = 
v 
w 

�(jσ) 
v 
w 

, 

where 

L , B
w ](jσI − A)−1[Bv 

�→ � 
(jσI − A)−1[Bv , Bw ]L L�(jσ) = L �� . 

I I 

Therefore the frequency domain condition of feasibility of the IQC model is 
� � � �→ � � 

I I I 0 
�(jσ) ∀ ρ − ∩ σ ≤ R. 

−G(jσ)→ −G(jσ)→ 0 0 

To guarantee that the inequality holds for some (sufficiently large) ρ > 0 it is sufficient 
to satisfy the simpler inequality 

� �→ � � 
G(jσ) G(jσ)

�(jσ) ∀ −γI. (13.9)
I I 

Note that matrix � = �(jσ) comes naturally from the original IQC for Σ: assuming that 
v and w are square integrable over (0, ⊂) yields 

� 
� � �→ � � 

v̂(jσ) v̂(jσ)
δ�(xL, v, w)dt = �(jσ) dσ. 

w(jσ) w(jσ)ˆ ˆ0 −� 
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One can give an interpretation of �(jσ) as the weight matrix which describes the re­
distribution of energy in the spectrum of signals as v gets transformed into w by subsystem 
Σ. From this viewpoint, (13.9) is a natural generalization of the harmonic balance idea 
from the special case of the circle criterion, where 

� � 
I 0 

�(jσ) = . 
0 −ρ0I 

13.4.4 Existence of Storage Functions 

An important advantage of IQC analysis is the possibility of using an IQC δ → V̇ without 
knowing an explicit expression for the storage function V . The following theorem allows 
one to derive existence of a storage function satisfying a certain IQC. 

Let δ : Rm ≈ R be a quadratic form. It is said that system S ∪ Lm satisfies the 2,loc 

conditional IQC defined by δ if for every z0 ≤ S and T > 0 the infimum 

U(z0, T ) = inf δ(z(t))dt, 
z�F (z0,T ) T 

taken over the set F(z0, T ) of all signals from S which are square integrable and define 
same state of S as z0 at time T , is finite. 

Theorem 13.5 If S ∪ Lm satisfies the conditional IQC defined by quadratic form 2,loc 

δ : Rm ≈ R then the IQC δ → V̇ holds for some V . 

Proof The proof is similar to that of Theorem 13.3, defining V (z, T ) = −U(z, T ). Then 
(13.2) is the standard Bellman inequality, and (13.1) follows from the observation that 

U(z, T ) ∀ δ(z(t))dt ≈ 0 as T ≈ ⊂ 
T 

for all z ≤ S � Lm .2 



� � 

� 

20 

13.5 Lower Bounds of Storage Functions 
mConsider an IQC model of a system S = {z} ∪ L2,loc, with external input f = Linz, 

transient response output y = Loutz, and a set of IQC 

δk(z) → V̇k, k = 1, 2, . . . 

Assume the IQC model is feasible, i.e. the quadratic form 

ρ|f |2 − |y|2 − ck δk (z) = ρ|Linz|
2 − |Loutz|

2 − ck δk (z) 

is positive semidefinite for some choice of ρ, ck → 0. As it was pointed out before, IQC 
feasibility proves stability when the corresponding storage function 

V = ck Vk 

is non-negative, and proves instability otherwise. Thus, obtaining easy-to-handle lower 
bounds of the storage functions Vk is an important component of IQC analys. 

13.5.1 Input-Output Setup for IQC 

Let Σ = {h = [v; w]} ∪ Lk+q be a system describing a relation between vector signals 2,loc 

v = v(t) ≤ Rk and w = w(t) ≤ Rq . Let A,B1, B2 be real matrices of dimensions n-by-n, 
n-by-k, and n-by-q respectively, such that A is a Hurwitz matrix. Let X0 be a subset in 

m mRn . Define S ∪ L2,loc, where m = k + q + n, as the set of all z = [v; w; x] ≤ L2,loc such 
that [v; w] ≤ Σ and 

ẋ(t) = Ax(t) + B1v(t) + B2w(t), x(0) ≤ X0. (13.10) 

Here Σ describes the “complex” component of a feedback system S, while (13.10) repre­
sents a nominal LTI feedback, as well as the auxiliary signals introduced when deriving 
IQC for Σ. For example, (13.10) may combine equations (13.5),(13.7), in which case 

x = [xG; xL], X0 = {[xG; xL] : xL = 0}. 

Note that two signals z1 = [v1; w1; x1] and z2 = [v2; w2; x2] define same state of S at time 
T > 0 if and only if x1(T ) = x2(T ) and signals [v1; w1], [v2; w2] define same state of Σ at 
time T . 

Assume that an IQC δ(x, v, w) → V̇ is satisfied for S, where δ is a known quadratic 
form on Rm, while the storage function V : S × (0,⊂) ≈ R is not known. The following 
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→question is of major interest: given a symmetric n-by-n matrix Q = Q (where n is the 
dimension of x(t)) when is it possible to claim that the inequality V (z, T ) → x(T )→Qx(T ) 
holds for all z = [v; w; x] ≤ S, T > 0? 

To derive such quadratic lower bounds for V , some assumptions of causality and 
stability are to be imposed on the relation between v and w defined by Σ. The basic 
inequality 

V (z, T ) → − δ(z0(t))dt, (13.11) 
T 

which holds for every z0 ≤ S � Lm defining same state of S at time T as z, is to be used 2 

to get a lower bound for V (z, T ). More precisely, for z = [v; w; x] ≤ S, z0 = [v0; w0; x0] 
will be defined by a signal [v0; w0] ≤ Σ such that v0(t) = v(t), w0(t) = w(t) for t < T , 
for which the integral of δ(z0(t)) from T to infinity is small. Depending on the situation, 
z0 is either explicitly assumed to exist, or can be proven to exist using some indirect 
assumptions. 

13.5.2 Zero In - Zero Out 

The following assumption about Σ leads to a simple lower bound for V : 

(ZIZO): for every h = [v; w] ≤ Σ and T > 0 there exists h0 = [v0; w0] ≤ Σ � Lk+q such that 2 

h and h0 define same state of Σ at time T , h(t) = h0(t) for all t < T , and h0(t) = 0 
for all t > T . 

In other words, (ZIZO) means that v can be switched to zero at any time T > 0, and 
this will make w zero as well. The assumption holds for unbiased memoryless relations 
between v and w, such that w(t) = t|v(t)|, though it can also be true for some nonlinear 
dynamical relations, such as w(t) = v(t− 1) sin(v(t)). 

Theorem 13.6 Assuming (ZIZO), 

V (z, T ) → x(T )→Qx(T ), 

where 
→ →QA+ A Q = Q0, δ([0; 0; a]) = a Q0a ∩ a ≤ Rn . 

Note that δ([0; 0; a]) ∀ 0 would imply Q → 0 and hence V (z, T ) → 0.


Proof For z0 defined by [v0; w0] from (A0) we have


x0(T + φ) = e A� x0(T ) ∩ φ → 0. 
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Hence (13.11) yields 

AtV (z, T ) → − δ([0; 0; x0(t)]) = − (e At x(T ))→Q0(e x(T ))dt = x(T )→Qx(T ). 
T 0 

It is easy to see that the conclusion of Theorem 13.6 still holds when (ZIZO) is relaxed 
by assuming existence of extensions h0 with an arbitrarily small integral of |h0(t)|

2 over 
(T, ⊂). 

13.5.3 Convex IQC 

The following assumption about Σ is much less restrictive: 

(SC): for every h = [v; w] ≤ Σ, T > 0, and d ≤ Lk there exists h0 = [v0; w0] ≤ Σ � Lk+q 
2 2 

such that h and h0 define same state of Σ at time T , h(t) = h0(t) for all t < T , and 
v0(t) = d(t) for all t > T . 

In other words, (SC) means that v can be switched to any other square integrable signal 
at any time T > 0, and this will make w square integrable as well. The assumption holds 
for most stable causal transformations from v to w. 

When working with (SC), we will need an additional assumption about δ, A,B2: the 
existence of γ > 0 such that 

δ([0; W ; X]) ∀ −γ|W |2 ∩ X ≤ Cn, W ≤ Cq , σ ≤ R : jσX = AX + B2W. (13.12) 

Condition (13.12) means strict convexity of the integral 

J(w) = δ([0; w(t); x(t)])dt : ẋ = Ax + B2w, x(0) = 0 
0 

as a function of w ≤ Lq 
2, i.e. in some sense strict convexity of the IQC δ([v; w; x]) → V̇ as 

a constraint imposed on w. 

Theorem 13.7 Assuming (SC) and (13.12), there exists n-by-n matrix Q = Q→ such 
that 

J0(a) = − →Qa = inf δ([v; w; x])dt : ẋ = Ax + B1v + B2w, x(0) = aa max 
q 
2

v�Lk 
2

w�L 0 

for all a ≤ Rn which belong to the set 

XS = {x(T ) : [v; w; x] ≤ S, T > 0}, 
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and the inequality 
V (z, T ) → x(T )→Qx(T ), 

holds for all z ≤ S, T > 0. 

Proof We will only give a sketch of the proof here. On one hand, (13.12) guarantees 
that the maximum 

J1(a, v) = max δ([v; w; x])dt : ẋ = Ax + B1v + B2w, x(0) = a 
w�Lq 

2 0 

exists and is finite for all v ≤ Lk 
2 , a ≤ Rn . By (13.11) we have 

V (z, T ) → −J1(x(T ), v) 

for every z ≤ S, T > 0. Hence J0(a) is finite for all a ≤ XS , and V (z, T ) → −J0(x(T )). 
Since maximum (or an infimum) of a quadratic form over all perturbations of the argu­
ment along a given linear subspace is a quadratic form again, J1(a, v) and J0(a) must be 
quadratic forms. 

It is possible to produce an algorithm for calculating matrix Q from Theorem 13.7 
using Riccati equation solvers and standard linear equation solvers. This is left as an 
excercise for the reader familiar with linear-quadratic optimization and KYP lemma. 

It is easy to see that the conclusion of Theorem 13.7 still holds when (SC) is relaxed 
by assuming existence of extensions h0 for which the integral of |v0(t) −d(t)|2 over (T, ⊂) 
can be made arbitrarily small. 

13.5.4 A Minimax Condition for V → 0 

The result presented in this subsection utilizes Theorem 13.7 to show that under a very 
non-restrictive assumption feasibility of a convex IQC model implies non-negativity of the 
corresponding storage function, and hence stability of the original system. 

Theorem 13.8 Assume that conditions (SC) and (13.12) are satisfied. In addition, 
assume that there exists � > 0 such that 

δ([V ; 0; X]) → �|V |2 ∩ X ≤ Cn, V ≤ Cq , σ ≤ R : jσX = AX + B1V. (13.13) 

If 
δ([Cx + Dw; w; x]) ∀ 0 ∩ w ≤ Rq , x ≤ Rn , (13.14) 

and A + B1C is a Hurwitz matrix then V (z, T ) → 0. 
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Note that the last two assumptions of Theorem 13.8 are usually satisfied automatically 
when v − Cx − Dw = f plays the role of an external signal, and Cx + Dw represents the 
response of the nominal system model to input w. A mor essential assumption is given 
by (13.13), which essentially says that the zero model of Σ, i.e. the one defined by 

Σ0 = {[v; w] ≤ Lk 
2,loc : w(t) ≥ 0}2,loc × Lq 

satisfies the IQC defined by δ − �|v|2 (i.e. in a strict sense), though with a (possibly) 
different storage function. Since the IQC are frequently used to describe the difference 
between the nominal and the true dynamics, such assumption about the IQC appears to 
be reasonable. 

q 
2 

Proof Returning to the proof of Theorem 13.7, note that the integral 

J2(a, v, w) = δ([v; w; x])dt : ẋ = Ax + B1v + B2w, x(0) = a 
0 

is strictly convex with respect to w and strictly concave with respect to v. Hence, by the 
minimax theorem, we have 

−a →Qa = min max J2(a, v, w) = max min J2(a, v, w). 
q 
2 

k 
2 

k 
2

v�L w�L w�L v�L

However, for a fixed w ≤ Lq 
2, the stability assumption about A+ B1C allows one to choose 

v ≤ Lk to satisfy v = Cx + Dw. Then, by (13.14), J2(a, v, w) ∀ 0, which implies Q → 0.2 
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13.6 Examples 

Practical verification of strict feasibility of IQC models can be done by standard routines 
of convex optimization. Furthermore, the IQC’s known for a number of standard nonlin­
ear, uncertain, or time-varying components, such as nonlinearities with conic, slope, and 
curvature bounds, LTI uncertainty (real parametric, unmodeled, repeated, uncertain de­
lay), time-varying uncertain gain (fast and slowly time-varying, harmonic, periodic), and 
many others, can be pre-stored in a computer for easy access. In this way, rather com­
plicated IQC models can be built and tested for feasibility in a very simple manner. 

13.6.1 Example: a servo with friction and uncertain delay 

Consider a simple model Sservo of a servo with friction on Figure 13.6, where 

2s2 + 2s + 1 
K(s) = 10 � 20s + 20 + 10/s

0.01s2 + s + 0.01 

represents a PID controller, the saturated high gain feedback models friction, and φ ≤ 
[0, 0.05] is the uncertain measurement delay. In terms of signals, u is control input, f is 

v� 1 p� � � K(s) u� �� 1 
d s s− 

−� 

f 
m 

60sat � 

−�s �e

Figure 13.6: Example: a servo with friction 

the friction force, v and p are velocity and position while m is a position measurement 
with uncertain delay. The external input d represents a high-pass sensor noise with the 
cut-off at 100 rad/sec. The objective is to prove stability of the system and to estimate 
the noise amplification coefficient J , defined as the maximal L2 gain in the closed loop 
channel e ∈≈ p, where ḋ+ 100d = ė. 

A feasibility test for the IQC model can be specified in the toolbox iqc beta with the 
commands2 

2This code will only work with the MATLAB version 5.3 or (possibly) higher 

cc_pbhat
Rectangle
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s=tf([1 0],1); % convenient constant 
abst_init_iqc; % initialize data structure for handling IQC 
e=signal; % external unmodeled disturbance 
f=signal; % a nonlinear gain output 
r=signal; % an uncertain block output 
p=signal; % position (feedback loop signal) 
m=p+r; % delayed position 
u=(10*(2*s^2+2*s+1)/(0.01*s^2+s+0.01))*((s/(s+100))*e-m); 
v=(1/s)*(u-f); % velocity 
p==(1/s)*v; % closing the loop 
f==60*iqc_sector(v); % f(f-60u)>=0 
r==iqc_ltvnorm(p)-p; % ||r+p||^2<=||p||^2 
J=iqc_gain_tbx(e,p) % estimate L2 gain e -> p 

Here the command abst init iqc initializes the data structure, and == is used to close 
feedback loops. Expression iqc sector(v) produces a signal z1 that satisfies the IQC 
defined by the quadratic form z1(z1 − v). The essential part of the code of iqc sector 
can be written as 

function w=iqc_sector(v) 
w=signal; % define the output 
c=symmetric; % introduce a scaling constant 
c>0; % put an LMI constraint on c 
w’*c*(w-v)<0; % describe an IQC constraint 

Similarly, the expression iqc ltvnorm(p) produces a signal z2 that satisfies the IQC 
defined by the quadratic form |z2|

2 − |p|2 . Finally, the command J=iqc gain tbx(e,p) 
indicates that f = e is the external disturbance, and y = p is the transient response to 
be considered. 

Running the script produces an empty J , which means that no δ ≤ �̃ such that δ < δ0 

was found. This does not necessarily imply that the original servo system is unstable – 
just that the IQC model is not good enough. 

A more accurate IQC model of the servo system would use the (additional) IQC. 
To check feasibility of the upgraded IQC model, the MATLAB code above should be 
modified by replacing iqc sector(v) and iqc ltvnorm(p)-p with iqc monotonic(v) 
and iqc cdelay(p,.05) respectively. Running the modified script produces J � 58, 
which means that the new IQC model is strictly feasible for ρ as small as 3600. Invoking 
an appropriate IQC post-feasibility result (for example, Theorem 13.8) shows that the 
resulting storage function V is non-negative, and hence the servo system is stable, and 
the noise amplification coefficient J does not exceed 60. 
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13.6.2 Example with cubic nonlinearity and delay 

For an application of IQC analysis where strict feasibility does not take place consider the 
following system of differential equations3 with an uncertain constant delay parameter φ : 

ẋ1(t) = −x1(t)
3 − x2(t− φ)3 (13.15) 

ẋ2(t) = x1(t) − x2(t) (13.16) 

Analysis of this system is easy when φ = 0, and becomes more difficult when φ is an 
arbitrary constant in the interval [0, φ0]. The system is not exponentially stable for any 
value of φ . Our objective is to show that, despite the absence of exponential stability, the 
method of IQC can be applied. 

For φ = 0, we begin with describing (13.15),(13.16) by the behavior set 

Z = {z = [x1; x2; w1; w2]}, 

where 
3 3 w1 = x1, w2 = x2, ẋ1 = −w1 − w2, ẋ2 = x1 − x2. 

The trivial IQC for Z are given by 
� �→ � � 
x1 −w1 − w2δLTI(z) = 2 P

x1 − x2 
, 

x2 

where P = P → is an arbitrary symmetric 2-by-2 matrix. Among the non-trivial IQC’s 
valid for Z, the simplest two represent the circle and the Popov criteria, and are defined 
by 

δNL(z) = d1x1w1 + d2x2w2 + q1w1(−w1 − w2) + q2w2(x1 − x2), 

V�(z(·), t) = 0.25(q1x1(t)
4 + q2x2(t)

4), 

where dk → 0. Let �̃ be the cone of matrices of the quadratic forms δ. Since we are only 
proving stability, let δ0 = 0. It turns out (and is easy to verify) that the only solutions 
of the IQC feasibility problem δ ∀ 0 are the ones that make δ = δLTI + δNL = 0, for 
example 

0.5 0 
P = 

0 0 
, d1 = d2 = q2 = 1, q1 = 0. 

The absence of strictly feasible solutions corresponds to the fact that the system is not 
exponentially stable. Nevertheless, a Lyapunov function candidate can be constructed 
from the given solution: 

4 4 4V (x) = x →Px+ 0.25(q1x1 + q2x2) = 0.5x 2 + 0.25x2.1 

3Suggested by Petar Kokotovich 
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This Lyapunov function can be used along the standard lines to prove global asymptotic 
stability of the equilibrium x = 0 in system (13.15),(13.16). 

Now consider the case when φ ≤ [0, 0.2] is an uncertain parameter. To show that 
the delayed system (13.15),(13.16) remains stable when φ ∀ 0.2, (13.15),(13.16) can be 
represented by a more elaborate behavior set Z = {z(·)} with 

z = [x1; x2; w1; w2; w3; w4; w5; w6] ≤ R8 , 

satisfying LTI relations 

ẋ1 = −w1 − w2 + w3, ẋ2 = x1 − x2 

and the nonlinear/infinite dimensional relations 

3 3 3 w1(t) = x1, w2 = x2, w3 = x2 − (x2 + w4)
3 , 

3 w4(t) = x2(t− φ) − x2(t), w5 = w4 , w6 = (x1 − x2)
3 . 

Some additional IQC are needed to bound the new variables. These will be selected 
using the perspective of a small gain argument. Note that the perturbation w4 can easily 
be bounded in terms of ẋ2 = x1 − x2. In fact, the LTI system with transfer function 
(exp(−φs) − 1)/s has a small gain (in almost any sense) when φ is small. Hence a small 
gain argument would be applicable provided that the gain “from w4 to ẋ2 ” could be 
bounded as well. 

It turns out that the �2-induced gain from w4 to ẋ2 is unbounded. Instead, we can 
use the �4 norms. Indeed, the last two components w5, w6 of w were introduced in order 
to handle L4 norms within the framework of IQC. More specifically, in addition to the 
trivial IQC with 

� �→ � � 
x1 −w1 − w2 + w3δLT I (z) = 2 P

x1 − x2 
, 

x2 

the set Z satisfies the IQC δ → V̇ , where 

δ(z) =d1x1w1 + d2x2w2 + q1w1(−w1 − w2 + w3) + q2w2(x1 − x2) 

+ d3[0.99(x1w1 + x2w2) − x1w3 + 2.54 w4w5 − 0.54(x1 − x2)w6] 

+ q3[0.2
4(x1 − x2)w6 − w4w5], 

di → 0. Here the IQC with coefficients d1, d2, q1, q2 are same as before. The term with d3, 
based on a zero storage function, follows from the inequality 

⎭ ⎡4 ⎭ ⎡4 
x1 − x24 40.99(x1 + x2) − x1(x 3 − (x2 + w4)

3) + 
5w4 

− → 02 2 2 
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(which is satisfied for all real numbers x1, x2, w4, and can be checked numerically). 
The term with q3 follows from a gain bound on the transfer function G� (s) = (exp(−φs)− 

1)/s from x1 − x2 to w4. It is easy to verify that the �1 norm of its impulse response 
equals φ , and hence the L4 induced gain of the causal LTI system with transfer function 
G� will not exceed 1. Consider the function 

� 
� ⎬

� t ⎬4 
⎬ ⎬ 

Vd(v(·), T ) = − inf 0.24|v1(t)|
4 − ⎬ v1(r)dr⎬ dt, (13.17) 

⎬ ⎬ 
T t−� 

where the infimum is taken over all functions v1 which are square integrable on (0,⊂) 
and such that v1(t) = v(t) for t ∀ T . Because of the L4 gain bound of G� with φ ≤ [0, 0.2] 
does not exceed 0.2, the infimum in (13.17) is bounded. Since we can always use v1(t) = 0 
for t > T , the infimum is non-positive, and hence Vd is non-negative. The IQC defined 
by the “q3” term holds with V� = q3Vd(x1 − x2, t). 

Let 
4 4δ0(z) = −0.01(x1w1 + x2w2) = −0.01(x1 + x2), 

which reflects our intention to show that x1, x2 will be integrable with fourth power over 
(0,⊂). 

The IQC model cannot be made strictly feasible, but is feasible for 

0.5 0 
P = , d1 = d2 = 0.01, d3 = q2 = 1, q1 = 0, q3 = 2.54 . 

0 0 

A Lyapunov function candidate can be constructed with the help of these P, dk , qk : 

V (xe(t)) = 0.5x1(t)
2 + 0.25x2(t)

4 + 2.54Vd(x1 − x2, t), 

where xe is the “total state” of the system (in this case, xe(T ) = [x(T ); vT (·)], where 
vT (·) ≤ L2(0, φ) denotes the signal v(t) = x1(T − φ + t) − x2(T − φ + t) restricted to the 
interval t ≤ (0, φ)). From the solution of the IQC feasibility problem, it follows that 

dV (xe(t)) 
∀ −0.01(x1(t)

4 + x2(t)
4). 

dt 

On the other hand, we saw previously that V (xe(t)) → 0 is bounded from below. There­
fore, x1(·), x2(·) ≤ �4 (fourth powers of x1, x2 are integrable over (0,⊂)) as long as the 
initial conditions are bounded. Thus, the equilibrium x = 0 in system (13.15),(13.16) is 
stable for 0 ∀ φ ∀ 0.2. 


