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Convex Optimization1 

Many optimization objectives generated by LTI system design and analysis do not fit 
within the frameworks of H2/H-Infinity optimization or Hankel optimal model reduction, 
but are still relatively easy to work with. In most cases, such objectives are characterized 
by convexity of the underlying constraints. This lecture is devoted to recognizing and 
working with convex constraints. 

15.1 Basic Definitions of Finite Dimensional Convex Analysis 

In this subsection, basic definitions of convex optimization with finite number of decision 
parameters are given. 

15.1.1 Convex Sets 

A subset � of V = Rn is called convex if 

cv1 + (1 − c)v2 ≤ � whenever v1, v2 ≤ �, c ≤ [0, 1]. 

In other words, a set is convex whenever the line segment connecting any two points of 
� lies completely within �. 

In many applications, the elements of � are, formally speaking, not vectors but other 
mathematical objects, such as matrices, polynomials, etc. What matters, however, is 
that � is a subset of a set V such that a one-to-one correspondence between Rn and V 
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is established for some n. We will refer to V as a (real finite dimensional) vector space, 
while keeping in mind that V is the same as Rn for some n. For example, the set Sn 

of all symmetric n- by-n matrices is a vector space, because of the natural one-to-one 
correspondence between Sn and Rn(n+1)/2 . 

Using this definition directly, in some situations it would be rather difficult to check 
whether a given set is convex. The following simple statement is of a great help. 

Lemma 15.1 Let K be a set of affine functionals on V = Rn, i.e. elements f ≤ K are 
functions f : V � R such that 

f (cv1 + (1 − c)v2) = cv1 + (1 − c)v2 � c ≤ R, v1, v2 ≤ V. 

Then the subset � of V defined by 

� = {v ≤ V : f (v) → 0 � f ≤ K} 

is convex. 

In other word, any set defined by linear inequalities is convex. 

Proof Let v1, v2 ≤ � and c ≤ [0, 1]. Since f (v1) → 0 and f (v2) → 0 for all f ≤ K, and 
c → 0 and 1 − c → 0, we conclude that 

f (cv1 + (1 − c)v2) = cf (v1) + (1 − c)f (v2) → 0 

for all f ≤ K. Hence cv1 + (1 − c)v2 ≤ K. 

Here is an example of how Lemma 15.1 can be used. Let us prove that the subset 
� = Sn of the set V = Sn of symmetric n-by-n matrices, consisting of all positive + 

semidefinite matrices, is convex. 
Note that doing this via the “nonnegative eigenvalues” definition of positive semidef­

initeness would be difficult. Luckily, there is another definition: a matrix M ≤ Sn is+ 

positive semidefinite if and only if x�M x → 0 for all x ≤ Cn . Note that any x ≤ Cn defines 
an affine (actually, a linear) functional f = fx : Sn � R according to 

fx(M ) = x �M x. 

Hence, Sn is a subset of Sn defined by some (infinite) set of linear inequalities. According + 

to Lemma 15.1, Sn is a convex set. + 
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15.1.2 Convex Functions 

RnLet f : � � R be a function defined on a subset � ≈ V = . Function f is called 
convex if the set 

�+ = {(v, y) ≤ � × R : y → f (v)},f 

is a convex subset of V × R. 
According to this definition, f : � � R is convex if and only if the following two 

conditions hold: 

(a) � is convex; 

(b) the inequality

f (cv1 + (1 − c)v2) ∀ cf (v1) + (1 − c)f (v2)


holds for all v1, v2 ≤ V , c ≤ [0, 1]. 

Note that condition (b) has the meaning that any segment connecting two points on the 
graph of f lies em above the graph of f . 

The definition of a convex function does not help much with proving that a given func­
tion is convex. The following three statements are of great help in establishing convexity 
of functions. 

Let us call a function f : � � R defined on a subset � of Rn twice differentiable at 
a point v0 ≤ � if there exists a symmetric matrix W ≤ Sn and a row vector p such that R 

f (v) − f (v0) − p(v − v0) − 0.5(v − v0)
�W (v − v0) 

� 0 as v � v0, v ≤ �, 
◦v − v0◦2 

in which case p = f �(v0) is called the first derivative of f at v0 and W = f ��(v0) is called 
the second derivative of f at v0. 

Lemma 15.2 Let � ≈ Rn be a convex subset of Rn . Let f : � � R be a function which 
f ��(v0) → 0is twice differentiable and has a positive semidefinite second derivative W = 

at any point v0 ≤ �. Then f is convex. 

For example, let � be the positive quadrant in R2, i.e. the set of vectors [x; y] ≤ R2 

with positive components x > 0, y > 0. Obviously � is convex. Let the function 
f : � � R be defined by f (x, y) = 1/xy. According to Lemma 15.2 is convex, because 
the second derivative 

W (x, y) = 

⎭ 
d2f /dx2 

d2f /dydx 
d2f /dxdy 
d2f /dy2 

⎝ 

= 

⎭ 
2/x3y 
1/x2y2 

1/x2y2 

2/xy3 

⎝ 

is positive definite on �. 
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Lemma 15.3 Let � ≈ V be a convex set of a V = Rn . Let P be a set of affine functionals 
on V such that 

f (v) = sup p(v) < ⊂ � v ≤ �. 
p�P 

Then f : � � R is a convex function. 

To give an example of how Lemma 15.3 can be used, let us prove that the function 
f : Cn,m � R defined by f (M ) = αmax(M ) is convex, where Cn,m denotes the set 
of all n-by-m matrices with complex entries. Though � = Cn,m is in a simple one-to-
one correspondence with R2nm, using Lemma 15.2 to prove convexity of f is essentially 
impossible: f is not differentiable at many points, and its second derivative, where exists, 
is cumbersome to calculate. Luckily, from linear algebra we know that 

αmax(M ) = max{Re(p �M q) : p ≤ Cn , q ≤ Cm , ◦p◦ = ◦q◦ = 1}. 

Since each individual function M ≡� Re(p�M q) is linear, Lemma 15.3 implies that f is 
convex. 

In addition to Lemma 15.2 and Lemma 15.3, which help establishing convexity “from 
scratch”, the following statements can be used to derive convexity of one function from 
convexity of other functions. 

Lemma 15.4 Let V be a vector space, � ≈ V . 

(a) If	f : � � R and g : � � R are convex functions then h : � � R defined by 
h(v) = f (v) + g(v) is convex as well. 

(b) If f : � � R is a convex function and c > 0 is a positive real number then 
h :	 � � R defined by h(v) = cf (v) is convex. 

(c) If f : � � R is a convex function, U is a vector space, and L : U � V is an affine 
function, i.e. 

L(cu1 + (1 − c)u2) = cL(u1) + (1 − c)L(u2) � c ≤ R, u1, u2 ≤ U, 

then the set 
L−1(�) = {u ≤ U : L(u) ≤ �} 

is convex, and the function f ∞ L : L−1(�) � R defined by (f ∞ L)(u) = f (L(u)) is 
convex. 
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For example, let g : S3 � R be defined on symmetric 2-by-2 matrices by R 
�⎭ ⎝� 

x y 2 2 2 g = x + y + z . 
y z 

To prove that g is convex, note that g = f ∞ L where L : S3 � R3 is the affine (actually, 
linear) function defined by 

⎛ ⎣ 
�⎭ ⎝� x 

x y
L = � y ⎨ , 

y z 
z 

and f : R3 � R is defined by 
⎪⎛ ⎣� 

x 
2 2f ⎬� y ⎨⎞ = x 2 + y + z . 

z 

Lemma 15.2 can be used to establish convexity of f (the second derivative of f turns out 
to be the identity matrix). According to Lemma 15.4, g is convex as well. 

15.1.3 Quasi-Convex Functions 

Let � ≈ V be a subset of a vector space. A function f : � � R is called quasi-convex if 
its level sets 

�� = {v ≤ � : f(v) < β} 

are convex for all β. 
It is easy to prove that any convex function is quasi-convex. However, there are many 

important quasi-convex functions which are not convex. For example, let � = {(x, y) : 
x > 0, y > 0} be the positive quadrant in R2 . The function f : � � R defined by 
f(x, y) = −xy is not convex but quasi-convex. 

A rather general definition leading to quasi-convex functions is given as follows. 

Lemma 15.5 Let � ≈ V be a subset of a vector space. Let P = {(p, q)} be a set of pairs 
of affine functionals p, q : � � R such that 

(a) inequality p(v) → 0 holds for all v ≤ �, (p, q) ≤ P ; 

(b) for any v ≤ � there exists (p, q) ≤ P such that p(v) > 0. 



�

6 

Then the function f : � � R defined by 

f (v) = inf{� : �p(v) → q(v) � (p, q) ≤ P } (15.1) 

is quasi-convex. 

For example, the largest generalized eigenvalue function f (v) = �max(�, �) defined 
on the set � = {v} of pairs v = (�, �) of matrices �, � ≤ Sn such that � is positive 
semidefinite and � ∈= 0, is quasi-convex. To prove this, recall that 

�max(�, �) = inf{� : �x��x → x ��x � x ≤ Cn}. 

This is a representation of �max in the form (15.1) with ((p, q) = (px, qx) defined by an 
x ≤ Cn according to 

px(v) = x �x, qx(v) = x ��x where v = (�, �). 

Since for any � → 0, � > 0 there exists x ≤ C such that x��x > 0, Lemma 15.5 implies 
that �max is quasi-concave on �. 

15.2 Standard Convex Optimization Setups 

There exists a variety of significantly different tasks commonly referred to as convex 
optimization problems. 

15.2.1 Minimization of a Convex Function 

The standard general form of a convex optimization problem is minimization f (v) � min 
of a convex function f : � � R. 

The remarkable feature of such optimization is that for any point v ≤ � which is not 
a minimum of f and for any number β ≤ (inf(f ), f (v)) there exists a vector u such that 
v + tu ≤ � and f (v + tu) ∀ f (v) + t(β − f (v)) for all t ≤ [0, 1]. (In other words, f 
is decreasing quickly in the direction u.) In particular, any local minimum of a convex 
function is its global minimum. 

While it is reasonable to expect that convex optimization problems are easier to solve, 
and reducing a given design setup to a convex optimization is frequently a major step, 
it must be understood clearly that convex optimization problems are useful only when 
the task of calculating f (v) for a given v (which includes checking that v ≤ �) is not too 
complicated. 
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For example, let X be any finite set and let g : X � R be any real-valued function 
on X. Minimizing g on X can be very tricky when the size of X is large (because there is 
very little to offer apart from the random search). However, after introducing the vector 
space V of all functions v : X � R, the convex set � can be defined as the set of all 
probability distributions on X, i.e. as the set of all v ≤ V such that 

⎡ 
v(x) → 0 � x, v(x) = 1, 

x�X 

and f : � � R can be defined by 
⎡ 

f(v) = g(x)v(x). 
x�X 

Then f is convex and, formally speaking, minimization of g on X is “equivalent” to 
minimization of f on �, in the sense that the argument of minimum of f is a function 
v ≤ � which is non-zero only at those x ≤ X for which g(x) = min(g). However, unless 
some nice simplification takes place, f(v) is “difficult” to evaluate for any particular v 
(the “brute force” way of doing this involves calculation of g(x) for all x ≤ X), this 
“reduction” to the convex optimization does not make much sense. 

15.2.2 Linear Programs 

As it follows from Lemma 15.1, a convex set � can be defined by a family of linear 
inequalities. Similarly, according to Lemma 15.3, a convex function can be defined as 
supremum of a family of affine functions. The problem of finding the minimum of f on 
� when � is a subset of Rn defined by a finite family of linear inequalities, i.e. 

� = {v ≤ Rn : ai
� v ∀ bi, i = 1, . . . ,m}, (15.2) 

and f : � � R is defined as supremum of a finite family of affine functions, 

f(v) = max ci
� v + di, (15.3)

i=1,...,k 

where ai, ci are given vectors in Rn, and bi, di are given real numbers, is referred to as a 
linear program. 

In fact, all linear programs defined by (15.2),(15.3) can be reduced to the case when f 
is a linear function, by appending an extra component vn+1 to v, so that the new decision 
variable becomes 

⎭ ⎝ 

v̄ = 
v 

≤ Rn+1 , 
vn+1 
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introducing the additional linear inequalities


c̄� iv̄ = c
� − ∀ −dv v ,+1 ii n

¯and defining the new objective function f by 

f̄ (v̄) = vn+1. 

Most linear programming optimization engines would work with the setup (15.2),(15.3), 
where f (v) = Cv is a linear function. The common equivalent notation in this case is 

Cv � min subject to Av ∀ B, 

where a
� i are the rows of A, bi are the elements of the column vector B, and the inequality 
Av ∀ B is understood component-wise. 

15.2.3 Semidefinite Programs 

A semidefinite program is typically defined by an affine function � : Rn � SN 
R and a 

vector c ≤ Rn, and is formulated as 

c � v � min subject to �(v) → 0. (15.4) 

Note that in the case when 
⎛ ⎣ 

b1 − a� v1 0 
.�(v) = ⎧ . . ⎨ 

0 bN − a� vN 

is a diagonal matrix valued function, the special semidefinite program becomes a general 
linear program. Therefore, linear programming is a special case of semidefinite program­
ming. 

Since a single matrix inequality � → 0 represents an infinite number of inequalities 
x��x → 0, semidefinite programs can be used to represent constraints much more efficiently 
than linear programs. The KYP Lemma explains the special importance of linear matrix 
inequalities in system analysis and optimization. On the other hand, software for solving 
general semidefinite programs appears to be not as well developed as in the case of linear 
programming. 
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15.2.4 Smooth Convex Optimization 

Smooth convex optimization involves minimization of a twice differentiable convex func­
tion f : � � R on an open convex set � ≈ Rn in the situation when f(v) approaches 
infinity whenever v approaches the boundary of � or infinity. 

This case can be solved very efficiently using an iterative algorithm which updates its 
= f ��(vcurrent guess vt at the minimum in the following way. Let p� = f �(vt), Wt t) > 0.t 

Keeping in mind that 

f(vt + λ) � αt(λ) = f(vt) + p λ + 0.5λ�Wtλt

can be approximated by a quadratic form, let 

λt = −Wt 
−1 pt 

be the argument of minimum of αt(λ). Let δ = δt be the argument of minimum of 
ft(δ) = f(vt + δλ) (since δ is a scalar, such a minimum is usually easy to find). Then set 
vt+1 = vt + δtλt and repeat the process. 

Actually, non-smooth convex optimization problems (such as linear and semidefinite 
programs) are frequently solved by reducing them to a sequence of smooth convex opti­
mizations. 

15.2.5 Feasibility Search and Quasi-Convex Optimization 

Convex feasibility search problems are formulated as the problems of finding an element 
in a convex set � described implicitly by a set of convex constraints. In most situations, 
it is easy to convert a convex feasibility problem to a convex optimization problem. For 
example, the problem of finding a x ≤ Rn satisfying a finite set of linear inequalities 
aix ∀ bi, i = 1, . . . , N , can be converted to a linear program 

y � min subject to ai
� x − y ∀ bi, (i = 1, . . . , N). 

If y = y0 ∀ 0 for some v0 = (y0, x0) satisfying the constraints then x = x0 is a solution of 
the original feasibility problem. Otherwise, if y is always positive, the feasibility problem 
has no solution. 

In turn, quasi-convex optimization problems can be reduced to convex feasibility 
search. Consider the problem of minimization of a given quasi-convex function f : � � R. 
Assume for simplicity that the values of f are limited to an interval [fmax, fmin]. As in the 
algorithm for H-Infinity optimization, set β− = fmin, β+ = fmax, and repeat the following 
step until the ratio (β+ − β−)/(fmax − fmin) becomes small enough: solve the convex fea­
sibility problem of finding v ≤ � such that f(v) ∀ β where β = 0.5(β− + β+); if such v 
exists, set β− = β, otherwise set β+ = β. 
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15.2.6 Relaxation to a Linear Program 

In applications, general convex programs are frequently “relaxed” to linear programs by 
replacing infinite families of linear constraints with their finite “approximations”. The 
resulting linear program then serves as a source of lower bounds of the minimal cost in 
the original optimization problem. 


 �
 C(s) 

 P (s)
−� 

r y 

Figure 15.1: A SISO feedback design setup 

Consider, for example, the task of designing an output feedback controller C(s) from 
Figure 15.1 such that the closed loop response y(t) to the unit step r(t) = u(t) settles to the 
steady output value of y(t) = 1 in a given time T while minimizing the maximal overshoot 
max y(t) − 1 and undershoot −min y(t). Note that while this setup is not expected to 
yield a practically useful controller (the order of C cannot be fixed without losing the 
convexity of the problem formulation) it brings valuable insignt about the limitations of 
the output feedback design, especially when the given plant P is not minimum-phase (i.e. 
has strictly unstable zeros). 

Let 
T y (s y) = T0 (s
 y) + T1 (s)Q(s),
 T u(s
 u) = T0 (s
 u) + T1 (s)Q(s) 

be the Q-parameterization of all closed loop transfer functions from ṙ to y and r. Let


y (t y 
0(t) + h
y 

1(t) γ q(t), h
u(t) = h
u 
0(t) + h
u 

1(t) γ q(t)
h ) = h

be the corresponding parameterization of the impulse responses, where γ denotes convolu­
tion, and q = q(t) is the impulse response of the Q = Q(s) parameter. Let V = {v = q(·)} 
be the vector space of all functions q = q(t) which decay exponentially as t � ⊂. Let � 
be the subset of V defined by the condition 

±hu(t) ∀ σ, ±(hy (t) − 1) ∀ σ for t > T, 

where σ > 0 is a small parameter describing the amount of after-action permitted for 
t > T Let f : � � R be defined as 

f(q(·)) = max{max(hy (t) − 1), max(−hy (t))}. 
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By its definition as a maximum of affine functions of the decision parameter q(·), f is 
convex. The convex optimization problem f(v) � min is equivalent to the search for 
a stabilizing controller which minimizes the overshoot and the undershoot while keeping 
the prescribed settling time T . 

The exact formulation of the convex optimization problem involves an infinite number 
of linear inequalities (at all t ≤ R). In practice the original setup should be replaced 
with an approximation relying on a finite set of linear inequalities. For example, this can 
be done by sampling the original inequalities at a finite number of time points t = ti, 
i = 1, . . . , N . 

15.3 Duality 

Duality is extremely important for understanding convex optimization. Practically, it 
delivers a major way of derivin lower bounds in convex minimization problems. 

15.3.1 Dual optimization problem and duality gap 

According to the remarks made before, a rather eneral class of convex optimization prob­
lems is represented by the setup 

f(v) = max {ar v + br } � min subject to v ≤ � = {v : max{ck v + dk } ∀ 0}, (15.5) 
r�R k�K 

where ar , ck are given row vectors indexed by r ≤ R, k ≤ K (the sets R, K are not 
necessarily finite), br , dk are given real numbers, and v is a column decision vector. When 
K,R are finite sets, (15.5) defines a linear program. 

Consider some functions u : R ≡� R and q : K ≡� R which assign real numbers to 
the indexes, in such a way that only a countable set of values u(r) = ur , q(k) = qk is 
positive, and 

⎡ ⎡ 
uk → 0, uk = 1, qr → 0, qr ∀ 1. (15.6) 

k r 

Obviously, 
⎡ 

f(v) → ur (ar v + br ), 
r 

and 
⎡ 

qk (ck v + dk ) ∀ 0 � v ≤ �. 
k 

Hence 
⎡ ⎡ 

f(v) → ur br + qk dk � v ≤ � 
r k 
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whenever 
⎡ ⎡ 

ur ar + qk ck = 0, (15.7) 
r k 

in which case 
⎡ ⎡ 

ur br + qkdk (15.8) 
r k 

is a lower bound for the minimum in (15.5). Trying to maximize the lower bound leads to 
the task of maximizing (15.8) subject to (15.6),(15.7). This task, a convex optimization 
problem itself, is called dual with respect to (15.5). 

The key property of the dual problem is that its maximum (more precisely, supremum, 
since the maximum is not necessarily achievable) equals the minimum (infimum) in the 
original optimization problem (15.5). 

15.3.2 The Hahn-Banach Theorem 

The basis for all convex duality proofs is the fundamental Hahn-Banach Theorem. The 
theorem can be formulated in two forms: geometric (easier to understand) and functional 
(easier to prove). 

By definition, an element v0 of a real vector space V is called an interior point of a 
subset � ≈ V if for every v ≤ V there exists σ = σv > 0 such that v0 + tv ≤ � for all 
|t| < σv . 

Theorem 15.1 Let � is a convex subset of a real vector space V such that 0 is an 
interior point of �. If v0 ≤ V is not an interior point of � then there exists a linear 
function L : V ≡� R, L ∈≥ 0, such that 

L(v0) → sup L(v). 
v�� 

In other words, a point not strictly inside a convex set can be separated from the 
convex set by a hyperplane. 

To give an alternative formulation of the Hahn-Banach Theorem, remember that a 
non-negative function q : V ≡� R defined on a real vector space V is called a semi-norm 
if it is convex and positively homogeneous (i.e. p(av) = ap(v) for all a → 0, v ≤ V ). 

Theorem 15.2 Let q : V ≡� R be a semi-norm on a real vector space V . Let V0 be a 
linear subspace of V , and h0 : V0 ≡� R be a linear function such that q(v) → h0(v) for 
all v ≤ V0. Then there exists a linear function h : V ≡� R such that h(v) = h0(v) for all 
v ≤ V0, and h(v) ∀ q(v) for all v ≤ V . 
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To relate the two formulations, define q(v) as the Minkovski’ functional of �: 

q(v) = inf{t > 0 : t−1 v ≤ �}, 

and set 
V0 = {tv0 : t ≤ R}, h0(tv0) = t. 

15.3.3 Duality gap for linear programs 

To demonstrate utility of the Hahn-Banach theorem, let us use it to prove the “zero 
duality gap” statement for linear programs. 

Theorem 15.3 Let A, B, C be real matrices of dimensions n-by-m, n-by-1, and 1-by-m 
respectively. Assume that there exists v0 ≤ Rm such that Av0 < B. Then 

sup{Cv : v ≤ Rm , Av ∀ B} = inf{B � p : p ≤ Rn , A� p = C � , p → 0}. (15.9) 

The inequalities Av ∀ B, Av0 < B, and p → 0 in (15.9) are understood component-
wise. Note also that inf over an empty set equals plus infinity. This can be explained 
by the fact that inf is the maximal lower bound of a set. Since every number is a lower 
bound for an empty set, its infimum equals +⊂. Theorem 15.3 remains valid when there 
exist no p → 0 such that A�p = C �, in which case it claims that inequality Av ∀ B has 
infinitely many solutions, among which Cv can be made arbitrarily small. 

Proof The inequality 

sup{Cv : v ≤ Rm , Av ∀ B} ∀ inf{B � p : p ≤ Rn , A� p = C � , p → 0} 

is straightforward: multiplying Av ∀ B by p� → 0 on the left yields p�Av ∀ B�p; when 
A�p = C �, this yields Cv ∀ B �p. 

The proof of the inverse inequality 

sup{Cv : v ≤ Rm , Av ∀ B} → inf{B � p : p ≤ Rn , A� p = C � , p → 0} 

relies on the Hahn-Banach theorem. 
Let y be an upper bound for Cv subject to Av ∀ B. If y = ⊂ then, according to the 

already proven inequality, there exist no p → 0 such that A�p = C �, and hence the desired 
equality holds. 

If y < ⊂, let e denote the n-by-1 vector with all entries equal to 1. Consider the set 
⎩ 

⎥ x0 ⎥ 
⎢ ⎛ ⎣ 
⎥ ⎥ 

⎥⎥ ⎭ ⎝ 
⎠ � ⎧ ⎦x1 

� ⎧

� = x = � . ⎧ = 
Cv − λ + 1 

≤ Rn+1 : � > 0, λ > 0 . 
⎥ � .. ⎨ e − Av − � 

⎥ 
⎥ ⎥ 
⎥ ⎥ 
⎤ ⎫ xn 
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Then 

(a) � is a convex set (as a linear transformation image of a set defined by linear in­
equalities); 

(b)	 zero is an interior point of � (because it contains the open cube |xi| < 1, which can 
be seen by setting v = 0); 

(c)	 vector [y + 1; e − B] does not belong to � (otherwise Av + � = B and Cv − λ = y, 
which contradicts the assumption that Cv ∀ y whenever Av ∀ B). 

According to the Hahn-Banach Theorem, this means that there exists a non-zero linear 
functional 

⎭ ⎝ 
¯L

x0 = L0x0 + L� x̄, 
x̄ 

¯where L0 ≤ R, L ≤ Rn, defined on Rn+1, such that 

¯ ¯L0(Cv − λ + 1) + L�(e − Av − �) ∀ L0(y + 1) + L�(e − B) � � > 0, λ > 0, v. (15.10) 

Looking separately at the coefficients at v, λ, � and at the constant term in (15.10) implies 

¯ ¯ ¯L0C = L�A, L0 → 0, L → 0, L0y → L�B. (15.11) 

¯ ¯Note that L0 cannot be equal to zero: otherwise L�A = 0 and L�B → 0, which, after 
¯ ¯multiplying Av0 < B by L → 0, L ∈= 0 yields a contradiction: 

¯ ¯0 = L�Av0 < L�B ∀ L0y = 0. 

If L0 > 0 then for

¯
p = L/L0 

conditions (15.11) imply 
A� p = C � , p → 0, B� p ∀ y. 

15.4 Solving convex programs 

This section describes software which can be used for solving convex optimization prob­
lems in this class, and gives examples of control system related problems solved using this 
software. 
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15.4.1 Linear programming 

The optimization toolbox of MATLAB provides function linprog.m for solving linear pro­
grams. The simplest call format is 

v=linprog(C’,A,B) 

to solve the problem of minimizing Cv subject to Av ∀ B. 
My past experience with this function is not very positive: it starts failing already 

for very moderately sized tasks. An alternative (and also a free option) is the SeDuMi 
package, which can be downloaded from 

http://fewcal.kub.nl/sturm/software/sedumi.html 

When SeDuMi is installed, it can be used to solve simultaneously the dual linear programs 

Cx � max subject to B − Ax → 0 

and 
B� p � min subject to A� p = C � , p → 0 

by calling 

[p,x]=sedumi(A’,C’,B); 

Actually, the indended use of SeDuMi is solving semidefinite programs, which can be 
achieved by changing the interpretation of the → 0 condition (set by the fourth argument 
of sedumi). In general, inequality z → 0 will be interpreted as z ≤ K, where K is a 
self-dual cone. Practically speaking, by saying that z ≤ K one can specify that certain 
elements of vector z must form positive semidefinite matrices, instead of requiring the 
elements to be non-negative. 

Note that both linprog.m and sedumi.m require the primal and dual optimization 
problems to be strictly feasible (i.e. inequalities Ax < B and p > 0 subject to A�p = C � 

must have solutions). One can argue that a well formulated convex optimization problem 
should satisfy this condition anyway. 

15.4.2 Semidefinite programming 

While SeDuMi is easy to apply for solving some semidefinite programs, it is frequently 
inconvenient for situations related to control systems analysis and design. A major need 
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there is to be able to define matrix equalities or inequalities in a “block format”, such as 
in the case of a Lyapunov inequality 

AP + PA� = Y → 0, P > 0 

where A is a given square matrix, and P = P � , Y = Y � are matrix decision parameters. 
The LMI Control Toolbox of MATLAB provides interface commands for defining linear 
matrix inequalities in a block matrix format. However, this interface itself is quite scriptic, 
and hence is not easy to work with. 

The package IQCbeta, freely available from 

http://www.math.kth.se/~cykao/ 

and already installed on Athena, helps to cut significantly the coding effort when solving 
semidefinite programs. 

Here is an example of a function which will minimize the largest eigenvalue of PA+A�P 
where A is a given matrix, and P is the symmetric matrix decision variable satisfying 
0 ∀ P ∀ I. 

function P=example_sdp_lyapunov(A)

% function P=example_sdp_lyapunov(A)

%

% demonstrates the use of IQCbeta by finding P=P’ which minimizes

% the largest eigenvalue of PA+A’P subject to 0<=P<=I


n=size(A,1); % problem dimension 
abst_init_lmi; % initialize the LMI solving environment 
p=symmetric(n); % p is n-by-n symmetric matrix decision variable 
y=symmetric; % y is a scalar decision variable 
p>0; % define the matrix inequalities 
p<eye(n); 
p*A+A’*p<y*II(n); 
lmi_mincx_tbx(y); % call the SDP optimization engine 
P=value(p); % get value of the optimal p 


