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The Tustin Transform1 

So far, the optimization methods under consideration were presented for the continuous 
time case. This lecture describes a technique which allows one to apply the continuous 
time algorithms of H2 optimization, H-Infinity optimization, and Hankel optimal model 
reduction to discrete time systems. The technique is based on applying the familiar 
“Tustin” (or “bilinear”) CT to DT transformation. While the standard systems software 
in MATLAB frequently solves DT problems by transforming them into CT format, solving 
the resulting CT problem, and then transforming the solution back, in some situations it 
may be beneficial to solve a CT problem by transforming it first into a DT format. 

11.1 Properties of the Tustin Transform 

This section introduces the Tustin transform for transfr matrices and state space models, 
and describes some useful properties of the transform. 

11.1.1 Tustin transform for transfer matrices 

For a discrete time (DT) transfer function H = H(z), its Tustin transform at frequency 
σ0 > 0 is defined by 

σ0 + s 
G(s) = Tu�0 [H](s) = H . (11.1)

σ0 − s 

1Version of April 3, 2004 



2 

The inverse of Tu�0 takes a CT system G(s) and produces the DT system with transfer 
matrix 

� � 

H(z) = Tu −1[G](s) = G σ0 
z − 1 

.	 (11.2)�0 z + 1 

For example, applying the Tustin transform at frequency σ0 = 1 to H(z) = 1/z yields 
G(s) = (1 − s)/(1 + s). 

The Tustin transform converts a number of properties of CT transfer matrices into 
similar properties of DT transfer matrices. This set of equivalencies is summarized by the 
following statement. 

Theorem 11.1 G = G(s) is a Tustin transform of a rational transfer matrix H = H(z) 
if and only if G is rational and H is the inverse Tustin transform of G. Moreover, in this 
case 

(a) the CT L-Infinity norm of G = G(s) equals the DT L-Infinity norm of H = H(z), 
i.e. 

sup �max(G(s)) = sup �max(H(z)); 
|z|=1Re(s)=0 

(b)	 G is CT stable (bounded in the region Re(s) > 0) if and only if H is DT stable 
(bounded in the region z > 1);| | 

(c) if H is strictly proper and DT stable, and σ0 is the frequency of the Tustin transform, 
then G(σ0) = 0,
 �

2σ0

G̃(s) = G(s) 

s − σ0 

˜is strictly proper and CT stable, and the CT H2 norm of G equals the DT H2 norm 
of H, defined by 

1 
� � 

∈H∈ 2 = ∈H(exp(jπ))∈ 2 dπ. 2 2�	 −�
F 

Proof Since, for 

z = 
σ0 + s

, s = σ0 
z − 1 

, 
z + 1 σ0 − s 

condition z = 1 is equivalent to s √ jR�{∪}, equality in (a) follows from the definitions. | |
In a similar way, (b) follows from the equivalence of z > 1 and Re(s) > 0. Finally, to | |
prove (c), note that 

ejt − 1 
σ0 

ejt + 1 
→ jσ 
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implies 
2σ0

dt = dσ, 
σ2 + σ2 

0 

hence 
1 

� � ⎡ � 
ejt �⎡2 

⎡ ⎡ G(jσ) 2 
⎡G σ0 

− 1 
⎡ dt =

1 
� � |

σ2 + σ
|
2 dσ. 

⎡ ejt + 1 ⎡2� −� � −� 0 

Since H is strictly proper, H(z) = 0 at z = ∪, which means that G(s) = 0 at s = σ0. 
Hence ˜ G equals the DT G(s) = 

�
2σ0G(s)/(s − σ0) is CT stable, and the CT H2 norm of ˜

H2 norm of H. 

11.1.2 Tustin transform for state space models 

Let H = H(z) be a transfer matrix with a state space model 

x[k + 1] = ax[k] + bf [k], g[k] = cx[k] + df [k], 

where f is the input and g is the output. In general, the Tustin transform G of H does 
not have to be a proper transfer matrix. However, this will be the case when z = −1 is 
not a pole of H. Hence, if −1 is not an eigenvalue of a, there exists an explicit expression 
for a state space model of G. 

Theorem 11.2 (a) If −1 is not an eigenvalue of a then the Tustin transform (at fre­
quency σ0) G = G(s) of 

H(z) = d + c(zI − a)−1b (11.3) 

is given by 
¯ c(sI − ¯G(s) = d + ¯ a)−1b̄, (11.4) 

where 

¯ ¯ ¯d = d−c(I +a)−1b, c̄ = 
�

2σ0c(I +a)−1 , b = 
�

2σ0(I +a)−1b, a = σ0(a−I)(a+I)−1 , 
(11.5) 

and σ0 is not an eigenvalue of ā. 

(b) If σ0 is not an eigenvalue of ā then the Tustin transform (at frequency σ0) H = H(z) 
of the CT transfer matrix (11.4) is given by (11.3), where 

¯ a)−1b̄, c = 
�

2σ0c̄(σ0I−¯ a)−1b̄, a = (σ0I+¯ a)−1 ,d = d−c̄(σ0I−¯ a)−1, b = 
�

2σ0(σ0I−¯ a)(σ0I−¯

and −1 is not an eigenvalue of a. 
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The proof of Theorem 11.2 follows by inspection. Note that the pair (a, b) is control­
¯lable if and only if the pair (ā, b) is controllable. Similarly, (c, a) is observable if and only 

if (¯ a) is observable. Therefore, as long as −1 is not an eigenvalue of a and σ0 is not an c, ̄
eigenvalue of ā, the order of H equals the order of G. 

11.2 Optimization via Tustin transform 

The general scheme of using Tustin transform in optimization of discrete time systems is 
quite straightforward: apply the Tustin transform to the original DT setup, do the CT 
optimization, then apply inverse Tustin transform to get the solution in the original DT 
problem. However, since the Tustin transform maps some proper transfer matrices into 
transfer matrices which are not proper, and since the H2 norm is not preserved under the 
transform, there is a number of technical issues which need careful consideration. 

11.2.1 Hankel optimal model reduction 

Let us define Hankel norm of a given DT stable (i.e. bounded in the region z > 1) rational | |
transfer matrix H(z) as the minimum of the DT L-Infinity norm of H + H−, taken over all 
rational transfer matrices H− which are anti-stable (i.e. bounded in the region z < 1).| |
Consequently, the DT Hankel optimal model reduction problem is defined as the task of 
finding, for a given DT stable transfer matrix H = H(z), a DT stable transfer matrix 
ˆ H isH of order less than a given positive integer m, such that the Hankel norm of H − ˆ

minimal. 
The discrete time Hankel optimal model reduction problem is an example of a problem 

for which application of the Tustin transform goes without complications. 

Theorem 11.3 If G(s) is Tustin transform of a DT stable transfer matrix H then G is 
also stable, and the CT Hankel norm of G equals the DT Hankel norm of H. Similarly, 
if H(z) is inverse Tustin transform of a CT stable transfer matrix G = G(s) then H is 
also stable, and the DT Hankel norm of H equals the CT Hankel norm of G. Moreover, 

ˆif G(s) is a CT Hankel optimal reduced model of G of order k then its inverse Tustin 
ˆtransform H(z) is the Hankel optimal reduced model of H of order k. 

The proof of Theorem 11.3 follows easily from the observation (following from the 
state space formulae for the Tustin transform) that order,stability, and anti-stability is 
preserved under the Tustin transform for rational DT transfer matrices bounded on the 
unit circle, and, symmetrically, these properties are preserved under the inverse Tustin 
transform for rational CT transfer matrices bounded on the imaginary axis. 
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11.2.2 The standard DT LTI feedback design setup 

The standard DT LTI feedback design setup is defined by a DT state space model in which 
the input is partitioned into disturbance w and control u, and the output is partitioned 
into cost z and sensor y: 

x[k + 1] = Ax[k] + B1w[k] + B2u[k], (11.6) 

z[k] = C1x[k] + D11w[k] + D12u[k], (11.7) 

y[k] = C2x[k] + D21w[k] + D22u[k]. (11.8) 

Without loss of generality, we can assume that D22 = 0 and a stabilizin proper feedback 
system 

xf [k + 1] = Af xf [k] + Bf y[k], (11.9) 

u[k] = Cf xf [k] + Df y[k], (11.10) 

is to be designed, where the controller is called stabilizing if the “A” matrix Acl of the 
closed loop system is a Shur matrix (all poles have absolute value less than one). Al­
ternatively, one can formulate the task as that of designing a strictly proper controller 
(11.9),(11.10), in which case D22 can be defined arbitrarily. 

As in the CT case, either H2 or H-Infinity DT norm of the closed loop transfer matrix 
from w to z is minimized. 

Note that, for a stabilizing controller to exist, the pair (A, B2) must be DT stabilizable 
(i.e. A + B2F is a Schur matrix for some F ) and the pair (C2, A) must be DT detectable 
(i.e. A + LC is a Schur matrix for some L). In addition, the standard DT setup is said 
to have a control singularity at a point z on the unit circle (i.e. z = 1) if the matrix | | 

Mu(z) = 
A − zI B2 

C1 D12 

is not left invertible. Similarly, the standard DT setup is said to have a sensor singularity 
at a point z on the unit circle if the matrix 

My (z) = 
A − zI B1 

C2 D21 

is not right invertible. Note that, unlike the CT case, singultity at z = ∪ is not a concern, 
and, accordingly, matrices D12, D21 could be zero without making the setup singular. 
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11.2.3 H-Infinity optimization via Tustin transform 

For convenience, we will consider the case when D22 = 0 and a general proper stabilizing 
controller is to be designed to minimize the closed loop DT H-Infinity norm of the transfer 
function from w to z. 

Well posedness of a standard DT LTI feedback design setup does not always guarantee 
that Tustin transform can be applied directly to the state space model (11.6)-(11.8), 
because matrix I + A is not guaranteed to be invertible. However, a standard setup 
(11.6)-(11.8) can be replaced by an equivalent optimization problem by re-defining the 
control variable according to 

new u = u − K0y. 

In terms of the new control variable, system coefficients change according to 

Anew = A + B2K0C2, Bnew = B1 + B2K0D21, Bnew = B2,1 2 

Cnew = C1 + D12K0C2, Dnew = D11 + D12K0D21, Dnew 
1 11 12 = D12, 

Cnew = C2, Dnew 
2 21 = D21. 

It is easy to verify by inspection that well the new setup is well posed (non-singular and 
output feedback stabilizable) if and only if the original one is. The important claim is 
that, for an appropriate selection of the constant matrix K0, I + Anew = I + A + B2K0C2 

will be invertible. 

Theorem 11.4 If real matrices a, b, c (where a is a square matrix) are such that a + bf 
and a + hc are invertible for some real matrices f, c then a + bkc is invertible for some 
real matrix k. 

Proof Note that the assumptions of the theorem, as well as existence of k such that 
a + bkc is invertible, do not change under the “coordinate transformation” 

a ∞� v1av2, b ∞� v1bv3, c ∞� v4cv2, 

where v1, v2, v3, v4 are invertible square matrices, as well as under the “feedback transfor­
mation” 

a ∞� a + bkf c, b ∞� b, c ∞� c. 

By applying an appropriate coordinate transformation, one can have a, b, c of the com­
patible block form 

⎤ � ⎤ � 

a = � 
I 
0 

a31 

0 
0 

a32 

a13 

a23 

a33 

⎣ , b = � 
0 
0 
I 

0 
0 
0 

⎣ , c = 

� 
0 
0 

0 
0 

I 
0 

� 

, 
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where some of the block dimensions could be zero. Applying an appropriate feedback 
transformation to these matrices yields a similar setup with a13 = 0 and a31 = 0. Now, 
by the assumption of invertibility of a + hc for some h, the rows of a23 must be linearly 
independent. Similarly, by the assumption of invertibility of a + bf for some f , the 
columns of a23 must be linearly independent. Hence, after an approprate coordinate 
transformation, we can get 

I ⎥ ⎦ 
a32 = , a23 = I 0 . 

0 

In this system of coordinates, defining 

0 0 
k = 

0 I 
− a33 

yields 
⎤ � 

I 0 0 0 
� 0 ⎢0 I 0 
� ⎢a + bkc = . 
� 0 I 0 0 ⎣ 

0 0 0 I 

For a well posed setup, Theorem 11.4 can be applied to 

a = I + A, b = B2, c = C2 

to prove (constructively) the existence of a matrix K0 such that I + A + B2K0C2 is 
newinvertible. Hence, after the output feedback transformation u = u − K0y, the Tustin 

transform at frequency σ0 can be applied to the setup. Using the state space formulae 
for Tustin transform, it can be verified easily that the resulting standard CT feedback 
design setup will be well posed. In addition, since the DT transfer matrix from u to y is 
strictly proper, the CT plant transfer matrix from u to y equals zero at s = σ0 (remember 
that s = σ0 will not be an open loop CT pole). Let KCT = KCT (s) define a stabilizing 
feedback for the CT plant achieving the closed loop H-Infinity norm �. Then σ0 is not 
a pole of KCT , and hence a Tustin transform can be applied to KCT to obtain a proper 
stabilizing DT feedback transfer matrix K = K(z) acieving the closed loop H-Infinity 
norm �. 

11.2.4 H2 optimization via Tustin transform 

For discrete time H2 optimization, we will consider a setup in which a strictly proper 
controller is being designed. It will also be assumed that I + A is invertible (otherwise, 
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an output feedback transformation of the control variable should be applied, as described 
in the previous subsection, to make I + A invertible). Since for a stable DT system H we 
have 

∈H∈ 2 2 2 = 2 ∈H(∪)∈F + ∈H − H(∪)∈2, 

and, when using a strictly proper controller, the closed loop gain from w to z at z = ∪
does not depend on the controller (actually, the gain equals D11), we can assume that 
D11 = 0. Finally, D22 will be chosen in such way that the open loop transfer matrix from 
u to y equals zero at z = −1. 

Under these assumptions, the Tustin transform P = P (s) of the original DT plant 
will exist, and will satisfy the conditions 

P11(σ0) = 0, P22(∪) = 0. 

For a proper stabilizing controller K c = Kc(s), the loop transfer function Twz is given by 

1 ˜ ˜ ˜
s − σ0 

Twz = P11 + P12K(I − P̃22K)−1P21, 

where 

K(s) = ˜˜ Kc(s) 
, P11(s) = 

P11(s) 
, P̃22(s) = (s − σ0)P22(s). 

s − σ0 s − σ0 

˜Let K� be the strictly proper optimal controller in the H2 feedback optimization problem 
defined by the plant 

P̃11 P12P̃ = 
P21P̃22 

. 

˜Since P̃22(σ0) = 0, K� does not have a pole at s = σ0. Hence the inverse Tustin transform 
can be applied to 

K� 
c(s) = (s − σ0)K̃�(s) 

to obtain a strictly proper DT controller K� = K�(z). By construction, this controller 
will be optimal in the original DT H2 optimal feedback design problem. 


