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Problem 8.1 

For the standard LTI feedback design setup defined by equations 
⎡ � ⎡ � 
x(t) ẋ(t) 

ẋ(t) = ax(t) + u(t) + w1(t), z(t) = 
u(t) 

, y = 
x(t) + w2(t) 

, 

where a � R is a parameter, find matrices T0, T1, T2 defining a valid Q-

parameterization of all closed loop transfer matrices T : w � z which 
can be achieved while using a finite order stabilizing dynamic feedback 
u = Ky. 

This state space model has matrix coefficients 
⎡ � ⎡ � 

⎥ ⎦ 1 a 
A = a, B1 = 1 0 , B2 = 1, C1 = , C2 = 

0 1 
, 

⎡ � ⎡ � ⎡ � ⎡ � 
0 0 0 1 0 1 

D11 = , D12 = , D21 = , D22 = . 
0 0 1 0 1 0


Since D22 →
= 0, consider the case when K is strictly proper. Then the set of all 
achievable closed loop transfer matrices will not change when D22 is replaced by zero. 
Indeed, for a strictly proper K = K(s), 

u = K(C2x + D21w + D22u) 
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is equivalent to 
ˆu = K(C2x+ D21w), 

where 
K = (I − KD22)

−1K, K = K(I + ˆˆ ˆ KD22)
−1 ,


ˆ
and K is strictly proper whenever K is strictly proper. 
To apply the Q-parameterization theorem of Lecture 10, take F,L such that A+ B2F 

and A+ LC2 are Hurwitz matrices, for example, 

F = −1 − a, L = [−1 − 1], 

which yields 
A+ B2F = A+ LC2 = −1. 

Then the explicit formulae for the transfer matrices T0, T1, T2 in 

Twz = T0 + T1QT2, Q − stable, proper 

yield 

T0(s) = 

� 
1 

s+1 

− 1+a 
s+1 

− 1+a 
(s+1)2 

− 1+a 
s+1 + (1+a)2 

(s+1)2 

� 

, T1(s) = 

⎡ 
1 

s+1 
1 − 1+a 

s+1 

� 

, T2(s) = 

⎡ 
1 
0 

− a 
s+1 
s 

s+1 

� 

. 

Problem 8.2 

For the standard discrete time LTI feedback design setup defined by equa­

tions 
⎡ � 
ax[k] 

x[k + 1] = −x[k] + u[k] + w1[k], z[k] = , y[k] = x[k] + w2[k], u[k] 

where a > 0 is a parameter, find the H2 optimal feedbacl law by using a 
Tustin transformation to an equivalent continuous time problem. Also 
give explicit expressions for the equivalent CT setup, and for the cor­

responing CT H2 optimal feedback. 
As in most discrete time formulations, this H2 optimization setuo has at least two 

different interpretations: the one in which only strictly causal controllers are allowed (i.e. 
u[k] is allowed to depend on y[k − 1], y[k − 1], . . . ), and the one with an arbitrary causal 
controller (u[k] depends on y[k], y[k − 1], . . . ). Below, a solution for the second case is 
presented. 
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First, since there is an open loop pole at z = −1, we introduce the new control variable 

v[k] = u[k] − y[k] = u[k] − x[k] − w2[k]. 

The new system equations will have the form 
⎡ � 

ax[k] 
x[k + 1] = w1[k] + w2[k] + v[k], z[k] = , y[k] = x[k] + w2[k]. x[k] + w2[k] + v[k] 

Then, in order to reduce the problem to that of desining a strictly causal controller, 
introduce the new sensor output 

ȳ[k] = y[k + 1] = x[k + 1] + w2[k + 1] = w1[k] + w2[k] + v[k] + w2[k + 1]. 

Since the equations now depend on both w2[k] and w2[k + 1], we introduce an additional 
system state x2[k] = w2[k], and a modified noise vector 

⎡ � ⎡ � 
f1[k] w1[k]

f [k] = = . 
f2[k] w2[k + 1] 

Now system equations have the form 
⎡ � ⎡ � ⎡ � 
x1[k + 1] x2[k] + f1[k] + v[k] ax1[k]= , z[k] = , ȳ[k] = x2[k]+f1[k]+f2[k]+v[k], x2[k + 1] f2[k] x1[k] + x2[k] + v[k] 

where x1[k] = x[k]. Here D11 = 0. To make sure that the transfer matrix from control to 
sensor is zero at z = −1, use D22 = 0, which means introducing a new sensor variable 

y�[k] = ȳ[k] − v[k] = x2[k] + f1[k] + f2[k]. 

Now the open loop plant transfer matrix is 
⎤ � 

a a a 
2z z z 

1 z+1 z+1P DT (z) = � 
z 2 

⎣ . 
z z 

1 z+1 0 
z 

Applyin the Tustin transform 

1 + s z − 1 
z = , s = ,

1 − s z + 1 



� 
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yields a continuous time plant 
⎤ � 

1−s (1−s)2 1−s a 
1+s a 

(1+s)2 a 
1+s 

� 1−s 2 1−s 2 ⎢ 
⎣ .P (s) = 

� 1+s (1+s)2 1+s 

1 2 0
1+s 

After dividing Pf z(s) by 1 − s and multiplying Pvy(s) by 1 − s, we get 
⎤ � 

a a(1−s) 1−s 
1+s (1+s)2 a 

1+s 
2� 1 2 ⎢ 

⎣ .P̂ (s) = 
� 1+s (1+s)2 1+s 

1 2 0
1+s 

A state space model of this CT plant is given by 
⎡ � ⎡ � ⎡ � 
ẋ1(t) −x1(t) + 2x2(t) + f1(t) + 2v(t) a(x1(t) − x2(t) − v(t))

= , z(t) = , y(t) = f1(t)+2x2(t). ẋ2(t) −x2(t) + f2(t) x1(t) 

To solve the corresponding standard CT H2 optimization problem, consider the asso­
ciated full information abstract H2 optimization: 

⎡ � ⎡ � 
ẋ1 −x1 + 2x2 + 2u � 

2 2= , {|x1|
2 + a |u + x2 − x1| }dt � min . 

ẋ2 −x2 0 

With a modified control vector 
ũ = u + x2 − x1, 

the problem can be re-written in an equivalent one-dimensional form 

ẋ1 = x1 + 2˜ 2 u|2}dt � min .u, {|x1|
2 + a |˜

0 

The optimal controller is given by 

u = −gf x1 − x2, 

where 
1 1 1 2pf 

gf = + − = 1 − ,
24 a2 2 a

and 
2 2 4a a a

pf = + + 
4 4 16 
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is the stabilizing solution of the associated Riccati equation 

2 2a
p 2 − 

a
p − = 0. 

2 4 

Similarly, consider the associated state estimation abstract H2 optimization: 
⎡ � ⎡ � 
�̇1 −�1 

� 
2

�̇2 
=

2�1 − �2 + 2q
, 

0 
{|�1 + q|2 + |�2| }dt � min . 

With a modified control vector 
q̃ = �1 + q, 

the problem can be re-written in an equivalent one-dimensional form 

�̇2 = −�2 + 2q̃, {|�2|
2 + |q̃|2}dt � min . 

0 

The optimal controller is given by 

q = −�1 − ge�2, 

where 
1 1 

ge = + 1 − = 2pe,
4 2 

and 
1 1 1 

pe = − + + 
4 4 16 

is the stabilizing solution of the associated Riccati equation 

1 12 p + p − = 0. 
2 4 

The optimal CT controller K CT has state space model 
⎡ � ⎡ � ⎡ � 

d ˆ x1 + 2ˆx1 −ˆ x2 + 2u 1 
= − (2ˆ x1 − ˆx2 − y), u = −gf ˆ x2,ˆ x2 gedt x2 −ˆ

which corresponds to controller transfer function 

KCT (s) = − 
gf (s + 1) + ge(s + 1 + 2gf ) 

. 
(s + 1 + 2gf )(s + 1 + 2ge) 
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ˆThe inverse Tustin transform K(z) of (1 − s)KCT (s) is given by 

ˆ 2zgf + ge(2z + gf (z + 1)) 
K(z) = − . 

(2z + gf (z + 1))(2z + ge(z + 1)) 

Due to the changes of control and sensor variables introduced in the original setup, the 
true optimal controller (with input y[k] and output u[k]) is given by 

ˆzK(z)
K(z) = 1 + 

1 + ˆ
, 

K(z) 

which yields 
4z − gegf

K(z) = . 
(2 + ge)(2 + gf )z + gegf 

Problem 8.3 

Consider a system described by the hyperbolic partial differential equation 

vt = vxx + rv, v(0, t) = 0, y(t) = v(1, t) + w(t), u(t) = vx(1, t), 

where v = v(x, t), for fixed time, is a function of the spatial parameter x � [0, 1], vt denotes 
the time derivative of v, vxx denotes the double spatial derivative of v, and r > 0 is a 
given parameter. The control action is the Dirichlet boundary condition u(t) = vx(1, t), 
while a noisy measurement of y(t) = v(1, t) + w(t) is used as the sensor signal. 

(a) Find an analytical expression for the transfer function P = Pr (s) from u to y. 

(b) For r = 1, find a good low order rational approximation P̂1 of P1, such that � = 
P1 − P̂1 is stable, together with an upper bound ���� < �. 

(c) Using the results from (b), small gain theorem, and H-Infinity optimization, design 
a finite order stabilizing feedback u = Ky for the original system, while trying to 
provide an upper bound for the closed loop H-Infinity norm �Twu� which is as small 
as possible. Note that this will only be possible when � is small enough. 


