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Problem 8.1

For THE STANDARD LTI FEEDBACK DESIGN SETUP DEFINED BY EQUATIONS

Y

(t) = ax(t) + u(t) + wi(t), z(t) = [ () } Y= [ x(t)aitl)@(t)

WHERE a € R IS A PARAMETER, FIND MATRICES Tg,T},T5 DEFINING A VALID Q-
PARAMETERIZATION OF ALL CLOSED LOOP TRANSFER MATRICES T : w — z WHICH
CAN BE ACHIEVED WHILE USING A FINITE ORDER STABILIZING DYNAMIC FEEDBACK
u= Ky.

This state space model has matrix coefficients

0 1

0 0 0 10 1
DnZ{O 0],D12={1};D21={0 1],D22:[0]-

Since Dys # 0, consider the case when K is strictly proper. Then the set of all
achievable closed loop transfer matrices will not change when Dy is replaced by zero.
Indeed, for a strictly proper K = K(s),

A:a,Blz[l 0},B2:1701:|:1:|’02:|:6L:|’

u = K(CQJJ + Dglw + D22u)
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is equivalent to R
u = K(CQ.I‘ + Dglw),

where R R .
K = (I — KDyp) 'K, K=K(I+KDy)™",

and K is strictly proper whenever K is strictly proper.
To apply the Q-parameterization theorem of Lecture 10, take F, L such that A+ By F
and A + LC5 are Hurwitz matrices, for example,

F=-1-a, L=[-1 —1],

which yields
A4+ ByF =A+ LCy, = —1.

Then the explicit formulae for the transfer matrices Ty, 11, T5 in

Tw. =Ty +T1QT5, () — stable, proper

yield
1 _ _1+4a 1 1 a
s s+1)2 a1 T el
1) = | H s e | T = | T | 0= | 2.
TS st T (s+1)2 s+1 s+1
Problem 8.2

FOR THE STANDARD DISCRETE TIME LTI FEEDBACK DESIGN SETUP DEFINED BY EQUA-
TIONS

wlk+ 1) = —afk] + ulk] + wi[k], 2[k] = [ i } ylk] = x[k] + walk],

WHERE a > 0 IS A PARAMETER, FIND THE H2 OPTIMAL FEEDBACL LAW BY USING A
TUSTIN TRANSFORMATION TO AN EQUIVALENT CONTINUOUS TIME PROBLEM. ALSO
GIVE EXPLICIT EXPRESSIONS FOR THE EQUIVALENT CT SETUP, AND FOR THE COR-
RESPONING CT H2 OPTIMAL FEEDBACK.

As in most discrete time formulations, this H2 optimization setuo has at least two
different interpretations: the one in which only strictly causal controllers are allowed (i.e.
ulk] is allowed to depend on y[k — 1], y[k — 1],...), and the one with an arbitrary causal
controller (u[k] depends on y[k],y[k — 1],...). Below, a solution for the second case is
presented.



First, since there is an open loop pole at z = —1, we introduce the new control variable
vlk] = ulk] — y[k] = u[k] — z[k] — wak].
The new system equations will have the form

ax[k]|

xlk + 1] = wi[k] + wo k] + v[k], 2[k] = w[k] + wo k] + v[k]

, ylk] = x[k] + wolk].

Then, in order to reduce the problem to that of desining a strictly causal controller,
introduce the new sensor output

glk] = ylk + 1] = [k + 1] + walk + 1] = wy[k] + walk] + v[k] + wa[k + 1].

Since the equations now depend on both ws[k] and wy[k + 1], we introduce an additional
system state xo[k] = ws[k]|, and a modified noise vector

= | Jle | = Lt |

Now system equations have the form

zilk + 1] | _ | wolk] + filk] + v[K] _ awy (k] o1
R B Ry el = | g | = Al
where x4 [k] = z[k]. Here Dy; = 0. To make sure that the transfer matrix from control to
sensor is zero at z = —1, use Dyy = 0, which means introducing a new sensor variable

ylk] = ylk] — v[k] = zo[k] + filk] + folk].

Now the open loop plant transfer matrix is

a a a
P = | L e
1 =2 0
z
Applyin the Tustin transform
I+ z—1




yields a continuous time plant

1—s (1—3)2

a1 a(1+8)2

Pls)=1 171 2a5p
1 2

1+s

After dividing Py.(s) by 1 — s and multiplying P,,(s) by 1 — s, we get

_a_ a(l=s)

R 1—{5 (1—58)2

P(S) - T+s (1455)2
LI e

A state space model of this CT plant is given by

[iﬂﬂ} :[-ﬂm@)+2$ﬂﬂ4jﬁ@)+20@)}726)_

(t) —5(t) + fo(t)

|

a(w1(t) = xa(t) = v(t))
$1(t)

» y(t) = fu(t)+2xa(1).

To solve the corresponding standard CT H2 optimization problem, consider the asso-

ciated full information abstract H2 optimization:

jjl . - + 25[’2 + 2u
Ty | )

With a modified control vector

U =1u-+xy — Tq,

} s / {‘$1|2+G2|U+£If2—$1|2}dt—>mil’l.
0

the problem can be re-written in an equivalent one-dimensional form

iy = 11 + 24, / {|z1]* + a®|a|*}dt — min.
0

The optimal controller is given by

U= —gfr1 — T2,
where
/1 1 1
w=\Vita s
and
a? a?
pr=— 44—+ —



is the stabilizing solution of the associated Riccati equation

a? a?

2
S —)
PPy

Similarly, consider the associated state estimation abstract H2 optimization:

[ Z; } B { PAY —_:le—l—2q } ’ /0 {|¥1 + q|* + [¥2|*}dt — min.

With a modified control vector
(j = 1/}1 + q,

the problem can be re-written in an equivalent one-dimensional form

U = — by + 2. / {15 + d*}dt — min.
0

The optimal controller is given by

q=—Y1 — geta,
where
geZ\/l+1—1=2pe
4 2 ’
and
1 1 1
Pe 1 + 1 + 6
is the stabilizing solution of the associated Riccati equation
P+ 1p . =0.
2 4

The optimal CT controller K7 has state space model

dt :%2 _:%2 e 2 ) fi1 2

which corresponds to controller transfer function

gr(s+ 1)+ ge(s+ 1+ 2g¢)
(s+142g7)(s+142g.) "

KCT(S) — _



The inverse Tustin transform K (z) of (1 — s)K°7T(s) is given by

() = — 2295 + 9e(22 + gs(2 + 1))
(224 gf(z+1))(22 4+ ge(z + 1))

Due to the changes of control and sensor variables introduced in the original setup, the
true optimal controller (with input y[k] and output u[k]) is given by

K
K(z) =1+ 27@,
1+ K(z)
which yields
4z — e
K(z) = ° " 9e9r

(24 9:) (24 97)2 + gegs

Problem 8.3

Consider a system described by the hyperbolic partial differential equation
Ve = Uga 10, 0(0,8) =0, y(t) = v(1,t) +w(t), u(t) = va(1,1),

where v = v(x,t), for fixed time, is a function of the spatial parameter x € [0, 1], v; denotes
the time derivative of v, v,, denotes the double spatial derivative of v, and r > 0 is a
given parameter. The control action is the Dirichlet boundary condition u(t) = v.(1,1),
while a noisy measurement of y(t) = v(1,¢) + w(t) is used as the sensor signal.

(a) Find an analytical expression for the transfer function P = P,.(s) from u to y.

(b) For r =1, find a good low order rational approximation Py of Py, such that A =
P, — Py is stable, together with an upper bound [|A|, < €.

(c) Using the results from (b), small gain theorem, and H-Infinity optimization, design
a finite order stabilizing feedback u = Ky for the original system, while trying to
provide an upper bound for the closed loop H-Infinity norm ||| which is as small
as possible. Note that this will only be possible when ¢ is small enough.



