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Problem 6.1 

A standard feedback control design setup is defined by the differential 
equations 

ẋ1 = −ax1 + u, ẋ2 = −x2 + w, 

and by	
� ⎥ 
cu 

y = w + bx2, z = , 
x1 

where a, b, c are real parameters. 

(a) Find matrices A,B1, B2, C1, C2, D11, D12, D21, D22 for this setup. 

By inspection, 
� ⎥ � ⎥ � ⎥ � ⎥ 

0 0 1 0 0 � � 
A = 

−a 
, B1 = , B2 = , C1 = , C2 = 0 b ,

0 1 0 1 0−1 

� ⎥ � ⎥ 
0 c 

D11 = , D12 = , D21 = 1, D22 = 0. 
0 0 

(b)	 Find all values of a, b, c for which the setup is singular, inficating 
frequency, multiplicity, and type (control/sensor) of the singular­
ity. 
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Matrix 
⎤ �


−a − s 0 1

⎢ 

Mu(s) = 
� 0 −1 − s 0 

⎢ 
� 0 c ⎣ 

1 0 0 

is right invertible for all s = j�, � ≤ R. The largest degree of determinant of a 
3-by-3 minor of Mu(s) equals d� = 1 when c = 0, and 2 otherwise. Hence, for 

0 

u 

c = 0, there is a control singularity at � = →, multiplicity 1 (the difference between 
system order and d�). For c = 0, there are no control singularities. u ≥
The determinant of 

⎤ �

−a − s 0 0


My (s) = � 0 −1 − s 1 ⎣


0 b 1


equals

�y (s) = det(My (s)) = (s + a)(s + b + 1).


Hence, the system has sensor singularities only when a = 0 or b = −1, in which case 
the singularity is located at � = 0, and its multiplicity 1 equals the multiplicity of 
the zero s = 0 of �y (s) (one unless a = b + 1 = 0, which implies multiplicity 2). 

Problem 6.2 

Find H-Infinity and H2 norms of G(s) = Ga(s) as a function of real param­
eter a: 

(a)	 G(s) = 1/(s + a) − 2/(s + 2a);


The impulse response g = g(t) of G is given by


−2at g(t) = e −at − 2e . 

Since 
⎡	 ⎡ 

�	 � 1
−2at −4at g(t)| 2dt = e − 4e −3at + 4e dt = ,

6a0 
|

0


∞G∞H2 = 1/
�

6a.


Since

s	 1 

G(s) = − =	 , 
s2 + 3as + 2a2 

− 
3a + s + 2a2/s 

we have G(j�) √ 1/3a, where the equality takes place at � = 
�

2a. Hence ∞G∞� =| |
1/3a. 
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(b)	 G(s) = (1 − exp(−a2s))/s.


The impulse response g = g(t) of G is given by

⎦ 

g(t) =	
1, t ≤ [0, a2], 
0, otherwise. 

Hence ∞G∞H2 = a, and ∞G∞� = a2 . 

Problem 6.3 

Find L2 gains of systems described below (input f , output g, defined for 
t √ 0). You are not required to prove correctness of your answer. 

(a)	 y(t) = e−atf (t).


L2 gain equals 1 for a √ 0, and infinity for a < 0.


(b)	 y(t) = f (t)/(1 + a2f (t)2).


L2 gain equals 1 for all a.


(c)	 y(t) = f (t + a).


L2 gain equals 1 for a � 0, and infinity for a > 0.


Problem 6.4 

A standard H2 optimization setup is defined by the following transfer 
functions: 

�	 ⎥ � ⎥ 
0	 1/(s + a)

Pwz (s) = , Pwy (s) = 1, Puz (s) =	 , Puy (s) = −1/(s + a),
0	 1 

where a ≤ R is a parameter. For all values of a for which the setup 
is non-singular, find the H2 optimal controller, together with the as­
sociated Hamiltonian matrices, solutions of Riccati equations, and con-
troller/observer gains. 

A state space model of the setup is given by 
�	 ⎥ 
x 

ẋ = −ax + u, x(0) = x0, z = , y = w − x. 
u 

The setup is non-singular for a = 0 (when a = 0, there is a sensor singularity at � = 0). ≥
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The full information abstract H2 optimization has the form 
⎡ 

� 
2Ẋ = −aX + U, (|X 2 + U )dt � min . 

0 
| | | 

The corresponding Hamiltonian matrix is 
� ⎥ 

a 1 
f i = .H −

1 a 

The stabilizing solution of the associated Riccati equation is 

Pf i = 
�
a2 + 1 − a, 

and the optimal full state feedback gain is given by 

Kf i = a −
�
a2 + 1. 

The state estimation abstract H2 optimization has the form 
⎡ 

� 

�̇ = −a� − q, �(0) = �0, q 2dt � min . 
0 

| | 

The corresponding Hamiltonian matrix is 
� ⎥ 

a 1 
se = .H −

0 a 

The stabilizing solution of the associated Riccati equation is 
⎦ 

Pse = 
0, 
−2a, 

for 
for 

a > 0, 
a < 0, 

and the optimal state estimator gain is given by 
⎦ 

0, for a > 0,
Lse = −2a, for a < 0. 

For a > 0, the H2 optimal controller has zero transfer function. For a < 0, the H2 
optimal controller can be written in the observer-based form 

d 
u = (a −

�
a2 + 1)ˆ ˆ x + u − 2a(−ˆx, x = −aˆ x − y),

dt 

and its transfer function is 
2a(a −

�
a2 + 1) 

K(s) = . 
s + 

�
a2 + 1 − 2a 



� 

� 
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Problem 6.5 

Open-loop plant P (s) is strictly proper, has a double pole at s = 0, and a 
zero at s = 0.1. Controller C = C(s) stabilizes the system on Figure 6.1, 

e f r 
 �
 C(s) 
 v
 P (s) 
− 

Figure 6.1: A SISO Feedback Setup 

and ensures good tracking (transfer function from r to e has gain less 
than 0.1) for frequencies up to 1 rad/sec. Find a good lower bound on 
the maximal gain from r to e. 

Let S denote the closed loop transfer function from r to e. Then, by assumption, 
S(0.1) = 1. Hence 

⎡ 
log S(j�) d�| | √ 0. 
�2 + 0.12 

0 

Using the fact that S(j�) � 0.1 for � � 1, and S(j�) � for � √ 1, we get | | | | � ∞S∞
⎡ 

� d� 
⎡ 

10 d� 
log ∞S∞� 

�2 + 1 
√ log 10 

�2 + 1 
, 

10 0 

i.e. 
arctan(10) 

� √ 10 �/2−arctan(10) √ 1014.76 .∞S∞

Problem 6.6 

Find the square of the H2 norm of 

s 
G(s) = 

s2 + a1s + a0 

as a rational function of real parameters a1, a0. 
A state space model of G is given by 

� ⎥ � ⎥ 
0 � �0 1 

A = , B = , C = 0 1 , D = 0. 
a1 1−a0 −

The solution P of the Lyapunov equation 

AP + P A� = −BB� 
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has the form 
� ⎥ 

P = 
1/2a0a1 

0 
0 

1/2a1 
. 

Hence 

∞G∞H2 = 
�
CPC � = . 

1 �
2a1 


