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Problem 5.1 

Use KYP Lemma to find (analytically) the set of all a ∀ R such that the 
Riccati equation 

P A + A�P = (C � − PB)(C − B�P ), 

where (A, B) is controllable, (C, A) is observable, and 

B = (s + a)−1000C(sI − A)−1 , 

has a stabilizing solution P = P � . 
This is a Riccati equation of the form 

� + P � + � �P = P αP, 

where 
� = −C �C, � = A + BC, α = BB � . 

Since the pair (A, B) is controllable, so is the pair (A + BC, B). According to the KYP 
Lemma, a stabilizing solution of the Riccati equation exists if and only if 

|w|2 − |Cx|2 ∞ 0 for jβx = (A + BC)x + Bw, β ∀ R. 

Substitution v = w + Cx yields an equivalent condition 

|v|2 − 2Re(v Cx) ∞ 0 for jβx = Ax + Bv, β ∀ R. 

1Version of April 26, 2004 
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Again, according to the KYP lemma,this is equivalent to 

1 > Re G(jβ) � β ∀ R, G(s) = C(sI − A)−1B. 

Since the maximal real part of G(jβ) is achieved at β = 0, a stabilizing solution of the 
> 20.001Riccati equation exists if and only if |a| . 

Problem 5.2 

Using the generalized Parrot’s theorem, write down an algorithm for 
finding matrix L which minimizes the largest eigenvalue of 

� � + 2L 
M = M(L) = 

2L� + �� α + L�L
, 

where � = �� , �, and α = α � are given matrices. 
First, let us find the lower bound �� for the functional to be minimized. Note that 

�max(M(L)) < r if nd only if the quadratic form 

� � � 2λr (w, u, y) = w �w + 2Re w (�y + 2u) + y αy + |u|2 − r(|w| + |y|2) 

is negative definite for u = Ly. Conditions for existence of such L are given by the 
generalized Parrot’s theorem (which can be applied because λr is convex with respect to 
u): 

(a) � < rI (i.e. λr (w, 0, 0) ≤ 0); 

� − 4I b 
(b) < rI (i.e. the minimum of λr (w, u, y) with respect to u is negative 

�� α 
definite). 

Hence 
� 
� ��� 

�� = max �max(�), �max 
� − 4I 

�� 
b 
α 

. 

Now, for r = ��, let u� = c1y + c2w be the argument of minimum of λr (w, u, y) with 
respect to u (it is easy to see that, in our case, c1 = 0 and c2 = −2). Let 

λ
r 
�(w, y) = λr (w, c1y + c2w, y) = w �w + 2Re w �y + y αy − 4|w|2 − ��(|w|2 + |y|2) 

be the minimum itself. Let w� = c3y be the argument of maximum of λ
r 
�(w, y) with 

respect to w (since � < ��I, λ
r 
�(w, y) is strictly concave with respect to w, hence a unique 

maximum is well defined). It is easy to see that, in our case, 

c3 = (4I + ��I − �)−1�. 
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To complete a solution, let us prove that 

L = L� = c1 + c2c3 = −2(4I + ��I − �)−1� 

is an optimal value of L. Indeed, according to the way c1, c2, c3 are defined, 

λr (w, u, y) = |u − c1y − c2w|2 − (w − c3y)�(4I + ��I − �)(w − c3y) + λ��(y),
r 

where 

λ��(y) = max λ
r 
�(w, y) = max min λr (w, u, y) = y (α − ��I + ��(4I + ��I − �)−1�)y � 0. 

r 
w w u 

When u = (c1 + c2c3)y, we have 

� I)w+λ��λr (w, u, y) = |c2(w−c3y)|2−(w−c3y)�(4I+��I−�)(w−c3y)+λ��(y) = w (�−�� (y) � 0. 
r r 

Problem 5.3 

Use the KYP Lemma to write a MATLAB algorithm for checking that a 
given stable transfer function G = G(s), available in a state space form, 
satisfies the condition 

|G(jβ)| > 1 � β ∀ R � {∪}. 

The algorithm should be exact, provided that the linear algebra op­
erations involved (matrix multiplications, eigenvalue calculations, com­
parison of real numbers) are performed without numerical errors. In 
particular, checking that |G(jβk )| > 1 at a finite set of frequencies βk is 
not acceptable in this problem2 . 

Assume that a minimal state space model of G is given by 

 

A B 
G := . 

C D 

Note that condition |G(jβ)|2 > 1 is equivalent to 

|Cx + Dw|2 − |w|2 

being positive definite subject to jβx = Ax + Bw for all real β, including β = ∪, in 
which case the linear constraint takes the form x = 0. According to the KYP Lemma, 

2Of course, frequency sampling may be acceptable in many practical applications 
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this is equivalent to the inequality D�D > I plus the existence of a stabilizing solution 
P = P � of the Riccati equation 

� + P� + � �P = PαP, 

where 

� = C �(I − D(D�D − I)−1D�)C, � = A − B(D�D − I)−1D�C, α = B(D�D − I)−1B� . 

The second condition is equivalent to the absence of purely imaginary eigenvalues of the 
associated Hamiltonian matrix 

� � 
� α 

H = . 
� −� 

The M-function ps5 3.m implements the algorithm. When its argument d is less than 
one, it either reports the “D condition” D�D > I is not satisfied, or produces a very 
small (numerically indistinguishable from zero) minimal absolute value of the real part of 
eigenvalues of the associated Hamiltonian matrix. 


