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Problem Set 4 Solution 1 

Problem 4.1 

For the SISO feedback design from Figure 4.1, where it is known that 
P (2) = 0 and 1 ± 2j are poles of P , find a lower bound (as good as you 
can) on the H-Infinity norm of the closed-loop complementary sensitivity 
transfer function T = T (s) (from r to v), assuming that C = C(s) is a 
stabilizing controller, T (j�) − 1 < 0.2 for � < 10, and T (j�) < 0.1 for | | | | | |
|�| > 20. 
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Figure 4.1: A SISO Feedback Setup 

Since P (2) = 0 and P (1 ± 2j) = √, we have S(2) = 1 and S(1 ± 2j) = 0, where 
S = 1 − T is the sensitivity function. By specifications, S(j�) < 0.2 for � < 10, and | | | |
S(j�) < 1.1 for � > 20. Let z1, . . . , zn denote the unstable zeros (possibly repeated) of | | | |
S, except the ones at 1 ± 2j. Define 

s2 + 2s + 5 s + z1 s + zn
Smp = . . . . 

s2 − 2s + 5 s − z1 s − zn 
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Then Smp is stable, has no unstable zeros, and satisfies S(√) = 1. Hence log(Smp) belongs 
to the class H2, and 

1 
⎡	

� 

| |
� 

−� 

2 log Smp(j�)|d� 2 
⎡ 

� log S(2j�) d� 
log	 Smp(2) = 

|
4 + �2 

= 
� 0 

|
1 + �2 

|
. 

Since Smp(j�) = S(j�) , and Smp(2) = 13/5, this implies | | | |
⎡ 

10� 13 
⎡ 

5 log(0.2)d� log(≥S≥�)d� log(1.1)d� 
log	 + + 

2 5	
� 

0 1 + �2
5 1 + �2 1 + �2 

= arctan(5) log(0.2) + (arctan(10) − arctan(5)) log(≥S≥�) + (�/2 − arctan(10)) log(1.1). 

Hence 

2 log 13 − arctan(5) log(0.2) − (�/2 − arctan(10)) log(1.1) 
,log ≥S≥� � 5 

arctan(10) − arctan(5) 

i.e. 
1016 

� � − 1 � 2.8 .≥T ≥ � ≥S≥ ·

Problem 4.2 

(a)	 Apply the formulae for H2 optimization to a standard setup with a

Hurwitz matrix A and with B2 = 0 to express the H2 norm of CT LTI

MIMO state space model


y = Cx, ẋ = Ax + Bf 

in terms of matrices C and P , where P = P � is the solution of the 
Lyapunov equation 

AP + P A� = −BB� . 

Consider the standard feedback optimization problem defined by 
⎤ ⎦	 ⎤ ⎦ 

Cx	 w1 ẋ = Ax + Bw1, z = , y = w2, w = . 
u	 w2 

The optimal controller is obviously u ≤ 0, i.e. the closed loop system has same H2 
norm as G(s) = C(sI − A)−1B. 
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According to the solution to H2 feedback optimization problem, the square of opti­
mal H2 norm equals 

trace(B� PfiB1) + trace(D12KfiPseK
� D� 

1 fi 12
), 

where Pfi, Pse and Kfi, Kse are the stabilizing solutions of the Riccati equations 
and the corresponding optimal state feedback gains in the associated abstract H2 
optimization problems. 

In our case K = L = 0, and Pfi, Pse satisfy 

C �C + PfiA + A�Pfi = 0, BB� + APse + PseA
� = 0. 

This immediately yields the formula 

≥G≥ 2 
H2 = trace(B�WoB), 

where Wo = Pfi = Q is the observability Gammian of system G, a solution of the 
Lyapunov equation 

QA + A�Q = −C �C. 

Noting that H2 norms of systems C(sI − A)−1B and B�(sI − A�)−1C � must be equal 
(since trace of MM � equals trace of M �M for all M), we get the equivalent formula 

≥G≥ 2 
H2 = trace(CWcC

�), 

where Wc = Pse = P is the controllability Gammian of system G, a solution of the 
Lyapunov equation 

AP + PA� = −BB� . 

(b)	 Use the result from (a) to obtain an explicit (with respect to a0, a1, a2) 
formula for the H2 norm of system with transfer function 

1 
G(s) = 

s3 + a2s2 + a1s + a0 
, 

where a0, a1, a2 are positive real numbers such that a1a2 > a0. 

Using the state space realization with 
⎣ � ⎣ � 

0 1 0 0 
� � 

A = � 0 0 1 � , B = � 0 � , C = 1 0 0 , 
1−a0 −a1 −a2 
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and solving the Lyapunov equation AP + P A� = −BB� as a set of linear equations 
with respect to the components of P = P �, yields 

Hence 

P = 
1 

2(a1a2 − a0) 

⎣ 

� 
a2/a0 0 −1 

0 1 0 
−1 0 a1 

� 

� . 

≥G≥H2 = 
� 

a2 
. 

2a0(a1a2 − a0) 

(c)	 Use MATLAB to check numerically correctness of your analytical 
solution. 

The script is given in ps4 2.m. 

Problem 4.3 

An undamped linear oscillator with 3 degrees of freedom is described as 
a SISO LTI system with control input v, “position” output q, and transfer 
function 

1 
P0(s) =	 . 

(1 + s2)(4 + s2)(16 + s2) 

The position output q is measured with delay and noise, so that the sensor 
output g is defined as g = 0.1f1 + ̂q, where q̂ is output of an LTI system with 
input q and transfer function 

P1(s) = 
1 − s

. 
1 + s 

The task is to design an LTI controller which takes g and a scalar refer­
ence signal r as inputs, produces v as its output, and satisfies the follow­
ing specifications, assuming r is the output of an LTI system with input f2 

and transfer function �
2a 

P2(s) = , 
s + a 

where a > 0 is a parameter, and f = [f1; f2] is a normalized white noise: 

(a) the closed loop system is stable; 

(b) the closed loop dc gain from r to q equals 1; 
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(c) the mean square value of control signal v is within 100; 

(d) the	 mean square value of tracking error e = q − r is as small as 
possible (within 20 percent of its minimum subject to constraints 
(a)-(c)). 

Use H2 optimization to solve the problem for a = 0.2 and a = 0.01. 
The MATLAB design code ps4 3.m uses SIMULINK diagram ps4 3a.mdl. Note how 

asymptotic tracking is forced by adding a pure integrator to the controller structure. 
Parameter r us used to tune the mean square control value (the smaller r, the large it is). 
Parameter d weights the artificial costs and noises introduces to assure non-singularity 
of the design setup. The Bode plot demonstrates asymptotic tracking in the closed loop 
system. 

For a = 0.01, a decent tracking error of 0.2 (20 percent of reference) can be achieved. 
For a = 0.2 performance is very poor at 0.78. For a = 1, the “tracking” task is essentially 
not approached. 


