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Problem 3.1 

Consider a control system described by 

q̈(t) − a 2 q(t) = v(t) + f1(t), g(t) = q(t) + f2(t), 

where f = [f1; f2] is a normalized white noise, v is the control signal, g is 
the sensor measurement, and a > 0 is a parameter. The objective is to 
find a dynamic feedback controller (with input g and output v) which 
stabilizes the system while using a minimum of control effort (defined as 
the asymptotic variance of v(t) as t � �). 

(a)	 Find the coefficients of the auxiliary abstract H2 optimization prob­
lems associated with the original task. 

For	
⎡ � ⎡ � 

q f1 x = 
q̇

, w = 
f2 

, u = v, y = g, z = v, 

we have	
⎡ � ⎡ � ⎡ � 

0	 1 0 0 0 
A = 

a2 0 
, B1 = 

1 0 
, B2 = 1 

, 

⎥ ⎦ ⎥ ⎦ ⎥ ⎦ 
C1 = 0 0 , C2 = 1 0 , D11 = 0 0 , 
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⎥ ⎦ 
D12 = 1, D21 = 0 1 , D22 = 0. 

The full information control abstract H2 optimization has coefficients 

a = A, b = B2, c = C1, d = D12. 

The state estimation abstract H2 optimization problem has coefficients 

a = A�, b = C
2
, c = B

1
, d = D

21
. 

(b)	 Write analytically the associated Hamiltonian matrices, bases of 
their stable invariant subspaces, stabilizing solutions of the Riccati 
equations, and optimal controller and observer gains. 

The full information control Hamiltonian is 
⎤	 � 

0	 1 0 0 
⎡ � 

2	
⎢� aA B2B2 

� 0 0 1 
�	 ⎢Hf i = −A� = 

0 �	 0 0 0 −a2 
⎣ . 

0 0 −1 0 

Its eigenvalues are ±a (double multiplicity each). Hence the stable invariant sub­
space of Hf i is the kernel of (Hf i + aI)2 . A basis in this kernel is given by 

⎤ � ⎤ � 
1 −1/a 

� 0 ⎢ � ⎢1 
� ⎢ � ⎢ . −2a3 , 
� ⎣ � 0 ⎣ 

−2a2 0 

Hence 
⎡ � ⎡ �

−1 ⎡ � 
−2a3	 2a30 1 −1/a	 2a2 

Pf i = − −2a2	 = 
0 0 1 2a2 2a

, 

and the optimal state feedback gain is given by 
⎥ ⎦ 
−2a2K = −B

2

� Pf i = −2a . 

A good sanity check here: the closed loop poles (eigenvalues of A+ B2K) should be 
identical to the stable eigenvalues of the Hamiltonian. 

The state estimation Hamiltonian is 
⎤	 � 

0 a2 1 0 
⎡	 � 

⎢A� C
2

� C2 = 
� 1 0 0 0 
�	 ⎢ .Hse = 

B1B1 
� −A � 0 0 0 −1 ⎣ 

0 1 −a2 0 
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2 2Its characteristic polynomial is s4 − 2a s + a4 + 1, and hence its eigenvalues s satisfy 
2 2s = a ± j. The stable eigenvalue s = x + jy such that s2 = a2 + j is given by 

�
a4 + 1 + a2 

�
a4 + 1 − a2 

x = − , y =	 . 
2	

− 
2 

The corresponding eigenvector is 
⎤ � 

x + jy 
� 1 ⎢ 
� ⎢h = . 
� j ⎣ 

y − jx 

Since Hse has real coefficients, the eigenvector corresponding to eigenvalue x − jy 
will be the complex conjugate of h. Hence real and imaginary parts of h form a 
basis in the stable invariant subspace of Hse: 

⎤ � ⎤ � 
y x 

� 0 ⎢ ⎢� 1 
� ⎢ � ⎢ . 
� 1 ⎣ , �	 0 ⎣ 

y−x 

Hence 
⎡ � ⎡ �

−1 ⎡	 � 

Pse = − 
1 0 y x −1/y x/y

= −x y 0	 1 x/y −x2/y − y
, 

and	
⎡ � 

C � 1/y
L = Pse 2 = . −x/y 

(c)	 Derive an analytical expression for the transfer function of the 
optimal dynamic feedback controller, and verify it using numerical 
calculations with h2syn.m. 

The closed loop transfer function is given by 

G(s) = −K(sI − A − B2K − LC2)
−1L. 

To verify the formulae, MATLAB function ps3 1.m can be used. This function relies 
on SIMULINK design diagram ps3 1a.m. 
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Problem 3.2 

Random signal q = q(t) is assumed to be a “bandlimited white noise” of a 
given bandwidth B (i.e. the result of passing the true white noise v1(t) 
through an ideal low-pass filter of bandwidth B rad/sec). A high quality 
sensor is assumed to measure q(t) accurately, except for a white additive 
noise, with the signal-to-noise ratio of 10. 

(a)	 Use h2syn.m to design a 10-th order linear filter which inputs the 
sensor output, and outputs an estimate of q̇(t) which makes the mean 
square estimation error as small as possible. 

M-function ps3 2a.m does the job. It uses a 10-th order Butterworth filter W with 
cut-off frequency B to model q as q = Ww, where w is the normalized white noise. 

(b)	 Test your design by comparing the simulated performance of filters 
you have designed for B = 10 rad/sec and B = 1 rad/sec on signals 
q(·) of bandwidths of B = 10 and B = 1 rad/sec. (One expects that 
the filter optimized for B = 10 rad/sec will be better on the q(·) 
with bandwidth B = 10 rad/sec than the filter optimized for B = 1 
rad/sec, and vice versa.) Use the generator of bandlimited white 
noise supplied with the SIMULINK to perform the simulations. 

The SIMULINK diagram for testing is ps3 2c.mdl. You must run ps3 2b.m before 
you open it. For B = 1 rad/sec, the degradation of performance when a filter 
designed for B = 10 is used is dramatic (at least a 10-fold increase of error). For 
B = 10, the degradation of performance when a filter designed for B = 1 is used is 
not as big, but still quite noticeable. 


