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Take-Home Test 2 Solutions!

Problem T2.1

SYSTEM OF ODE EQUATIONS
t(t) = Az(t) + Bo(Cx(t) + cos(t)), (1.1)

WHERE A, B,C' ARE CONSTANT MATRICES SUCH THAT CB =0, AND ¢: RF — RY 1S
CONTINUOUSLY DIFFERENTIABLE, IS KNOWN TO HAVE A LOCALLY ASYMPTOTICALLY
STABLE NON-EQUILIBRIUM PERIODIC SOLUTION z = x(t). WHAT CAN BE SAID ABOUT
trace(A) 7 IN OTHER WORDS, FIND THE SET A OF ALL REAL NUMBERS A SUCH THAT
A = trace(A) FOR SOME A, B, C, ¢ SUCH THAT (1.1) HAS A LOCALLY ASYMPTOTICALLY
STABLE NON-EQUILIBRIUM PERIODIC SOLUTION z = x(t).

Answer: trace(A) < 0.

Let zo(t) be the periodic solution. Linearization of (1.1) around z((-) yields

§(t) = Ad(t) + Bh(t)C6(t),
where h(t) is the Jacobian of ¢ at x(t), and
(t) = wo(t) + 0(t) + o(|5(2)])-

Partial information about local stability of xo(+) is given by the evolution matrix M (T),
where T' > 0 is the period of zq(-): if the periodic solution is asymptotically stable then
all eigenvalues of M (T') have absolute value not larger than one. Here

M(t) = (A + Bh(t)C)M(t), M(0) =1,
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and hence .
det M(T) = exp (/ trace(A + Bh(t)C’)dt) :
0

Since
trace(A + Bh(t)C) = trace(A + CBh(t)) = trace(A),

det(M(T)) > 1 whenever trace(A) > 0. Hence trace(A) < 0 is a necessary condition for
local asymptotic stability of zo(-).
Since system (1.1) with k = ¢ =1, ¢(y) = v,

A_[—O“ _Oa],B_[é],C—[O 1]

has periodic stable steady state solution

wo(t) = [ (1 + a2)~L cos(t) +Oa(1 + a?)Lsin(t)) }

for all @ > 0, the trace of A can take every negative value. Thus, to complete the solution,
one has to figure out whether trace of A can take the zero value.

It appears that the volume contraction techniques are better suited for solving the
question completely. Indeed, consider the autonomous ODE
Zl(t) = Z9 (t),
LH(t) = —z1(1),

z1(t)2+22(t)2

~+~

(1.2)

defined for 27 + 22 # 0. If (1.1) has an asymptotically stable periodic solution x¢ = z¢(t)
then, for e > 0 small enough, solutions of (1.2) with

21(0) 1
2(0) | —z|| <€ Z 0
23(()) xo(O)

small enough satisfy
tlim 23(t) —xo(t+7) =0,

where 7 &~ 0 is defined by zo(—7) = 0. In particular, the Euclidean volume of the image of
the the ball of radius € centered at z under the differential flow defined by (1.2) converges
to zero as t — o0o. Since the volume is non-increasing when trace(A) > 0, we conclude
that trace(A) < 0.



Problem T2.2

FUNCTION ¢; : R? — R? 1S DEFINED BY

(a)

T 1
(51 T2 = | T
Zs3 0

FIND A CONTINUOUSLY DIFFERENTIABLE FUNCTION g, : R*® — R?® sucH THAT
THE DRIFTLESS SYSTEM

#(t) = g1(z(t))ua(t) + ga(z(t))ua(t) (1.3)

IS COMPLETELY CONTROLLABLE ON R?.

For
1
g2(x) = | 0 | = const,
1
we have
0
g3 =1[91,92) = | 1
0

Since g1(x), g2, g3 form a basis in R? for all z, the resulting system (1.3) is completely
controllable on R3.

FIND CONTINUOUSLY DIFFERENTIABLE FUNCTIONS gy : R® +— R? AND h: R®
R SucH THAT Vh(z) # 0 FOR ALL Z € R® AND h(z(t)) IS CONSTANT ON ALL
SOLUTIONS OF (1.3). (NOTE: FUNCTION gs IN (B) DOES NOT HAVE TO BE (AND
CANNOT BE) THE SAME AS g5 IN (A).)

For example,

1 xy
g2(x)= | 1 [ =const, h ) = Z3.
0 x3

FIND A CONTINUOUSLY DIFFERENTIABLE FUNCTION gy : R* — R? SucH THAT
THE DRIFTLESS SYSTEM (1.3) IS NOT COMPLETELY CONTROLLABLE ON R?, BUT,
ON THE OTHER HAND, THERE EXISTS NO CONTINUOUSLY DIFFERENTIABLE FUNC-
TION h : R? — R sucH THAT Vh(Z) # 0 FOR ALL T € R® AND h(x(t)) 18
CONSTANT ON ALL SOLUTIONS OF (1.3).

For
0

gQ(I) = L1 )
T3



we have

0

g3 =g, 1] = | 1|,
0

and hence g1(z), g2, g3 form a basis in R® whenever z3 # 0. This contradicts the
condition that Vh(x) must be non-zero ad orthogonal to g;(x), go (and hence to g3)
for all z.

Problem T2.3

AN ODE CONTROL SYSTEM MODEL IS GIVEN BY EQUATIONS
() = @t +u(t),
i) = () + ul),
z3(t) = ( 1)) + u(t).
(a) FIND ALL POLYNOMIALS p : R +— R SUCH THAT SYSTEM (1.4) IS FULL STATE
FEEDBACK LINEARIZABLE IN A NEIGBORHOOD OF T = (.
System (1.4) has the form

(1.4)

@(t) = f(x(t) + g(x(t))u(t), (1.5)
where
T x% T 1
f T = x2 . g To =11
T3 P(l'l) T3 1
Define
G =9 g=If,onl, 93=1f 92, 921 = 1[92, ],
i.e.
X 229 T 4xoxs — 203 T
92 ) = | 273 |, 93 T = | 2z3p(z1) —2p(71) |, g2 T
T3 P(%) 3 2552]5(371) - ]5(351)1'% T3

For local full state feedback linearizability at = = 0 it is necessary and sufficient
for vectors ¢1(0), g2(0), g3(0) to be linearly independent (which is equivalent to
p(0)p(0) = 0) and for ge1(x) to be a linear combination of ¢;(x) and go(z) for
all z in a neigborhood of x = 0 (which is equivalent to p(z;) = 2). Hence

plxy) = z} + p1r1 + po, popr # 0

is necessary and sufficient for local full state feedback linearizability at x = 0.



(b) FOR EACH POLYNOMIAL p FOUND IN (A), DESIGN A FEEDBACK LAW
u(t) = K (1(t), 22(1), 23(1)) = Kp(21(1), 22(1), 25(1))

WHICH MAKES THE ORIGIN A LOCALLY ASYMPTOTICALLY STABLE EQUILIBRIUM
OF (1.4).

Since p(0) # 0, x = 0 cannot be made into a locally asymptotically stable equilib-
rium of (1.4). However, the origin z = 0 (i.e. with respect to the new coordinates
z = (x)) of the feedback linearized system can be made locally asymptotically
stable, as long as 0 € ¥(2) where 2 is the domain of . Actually, this does not
require any knowledge of the coordinate transform 1, and can be done under an
assumption substantially weaker than full state feedback linearizability!

Let
2(t) = Az(t) + Bo(t) (1.6)

be the feedback linearized equations (1.5), where

2(t) = ¢(x(t), () €Q, v(t) = alz(t))(u - Bx()))-

In other words, let

f(z) = ()] AV (2) — Ba(x)B(2)], g(x) = [$(2)] " Ba(x).

If 7 € () satisfies ¢(Z) = 0 then 7 is a conditional equilibrium of (1.5), in the sense
that

f(Z) +g(@)u=0
for u = [B(x). Moreover, since the pair (A, B) is assumed to be controllable, the
conditional equilibrium has a controllable linearization, in the sense that the pair

(f(@)+ g(z)u, g(x)) is controllable as well, because
}(@) + g(z)a = S71(AS — BF), g(z) = S~ Ba(z)
for ‘ .
S =19(z), F'=a(z)B(z).
It is easy to see that every conditional equilibrium Z of (1.5) with a controllable lin-
earization can be made into a locally exponentially stable equilibrium by introducing

feedback control
u(t) =u+ K(x(t) — x),

where K is a constant gain matrix such that

f(@) + g(@)u+ g(2)K



is a Hurwitz matrix. Indeed, by assumption z is an equilibriun of

2(t) = fr(x) = fx(t)) + g(x(t)) (@ + K(x(t) — 7)),

and
fx(@) = f(2) + g(2)u + g(z)K.

In the case of system (1.4) let

a1
= | To
T3
be a conditional equilibrium, i.e.
i =15 = p(T1) = —u
Then
_ 0 Zzo 0 1
f@+g¢@u=| 0 0 27 |, g()=]1
p(z1) 0 0 1

Hence a locally stabilizing controller is given by
u(t) = =27 + ki (w1 (t) — Z1) + ka(22(t) — 2) + ka(3(t) — Z3),

where the coefficients ki, ko, k3 are chosen in such a way that

0 Ty 0 1
0 0 279 | + 1|1 [/ﬁ ko 7473}
5@ 00 |

is a Hurwitz matrix.

FIND A C° FUNCTION p: R +— R FOR WHICH SYSTEM (1.4) IS GLOBALLY FULL
STATE FEEDBACK LINEARIZABLE, OR PROVE THAT SUCH p(-) DOES NOT EXIST.

Such p(-) does not exist. Indeed, otherwise vectors

1 2%2
1 and 2x3
1 p(l"l)

are linearly independent for all real xy, s, T3, which is impossible for

Ty = Ty = 0.5p(Z1).



