Massachusetts Institute of Technology

Department of Electrical Engineering and Computer Science 6.243j (Fall 2003): DYNAMICS OF NONLINEAR SYSTEMS

by A. Megretski

Take-Home Test 2 Solutions¹

Problem T2.1

SYSTEM OF ODE EQUATIONS

$$\dot{x}(t) = Ax(t) + B\phi(Cx(t) + \cos(t)), \tag{1.1}$$

WHERE A,B,C ARE CONSTANT MATRICES SUCH THAT CB=0, AND $\phi: \mathbf{R}^k \mapsto \mathbf{R}^q$ is continuously differentiable, is known to have a locally asymptotically stable non-equilibrium periodic solution x=x(t). What can be said about $\mathrm{trace}(A)$? In other words, find the set Λ of all real numbers λ such that $\lambda=\mathrm{trace}(A)$ for some A,B,C,ϕ such that (1.1) has a locally asymptotically stable non-equilibrium periodic solution x=x(t).

Answer: trace(A) < 0.

Let $x_0(t)$ be the periodic solution. Linearization of (1.1) around $x_0(\cdot)$ yields

$$\dot{\delta}(t) = A\delta(t) + Bh(t)C\delta(t),$$

where h(t) is the Jacobian of ϕ at $x_0(t)$, and

$$x(t) = x_0(t) + \delta(t) + o(|\delta(t)|).$$

Partial information about local stability of $x_0(\cdot)$ is given by the evolution matrix M(T), where T > 0 is the period of $x_0(\cdot)$: if the periodic solution is asymptotically stable then all eigenvalues of M(T) have absolute value not larger than one. Here

$$\dot{M}(t) = (A + Bh(t)C)M(t), \quad M(0) = I,$$

¹Version of November 25, 2003

and hence

$$\det M(T) = exp\left(\int_0^T \operatorname{trace}(A + Bh(t)C)dt\right).$$

Since

$$\operatorname{trace}(A + Bh(t)C) = \operatorname{trace}(A + CBh(t)) = \operatorname{trace}(A),$$

 $\det(M(T)) > 1$ whenever $\operatorname{trace}(A) > 0$. Hence $\operatorname{trace}(A) \leq 0$ is a necessary condition for local asymptotic stability of $x_0(\cdot)$.

Since system (1.1) with k = q = 1, $\phi(y) \equiv y$,

$$A = \begin{bmatrix} -a & 0 \\ 0 & -a \end{bmatrix}, B = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, C = \begin{bmatrix} 0 & 1 \end{bmatrix}$$

has periodic stable steady state solution

$$x_0(t) = \begin{bmatrix} (1+a^2)^{-1}\cos(t) + a(1+a^2)^{-1}\sin(t)) \\ 0 \end{bmatrix}$$

for all a > 0, the trace of A can take every negative value. Thus, to complete the solution, one has to figure out whether trace of A can take the zero value.

It appears that the volume contraction techniques are better suited for solving the question completely. Indeed, consider the autonomous ODE

$$\begin{cases}
\dot{z}_1(t) = z_2(t), \\
\dot{z}_2(t) = -z_1(t), \\
\dot{z}_3(t) = Az_3(t) + B\phi \left(Cz_3(t) + \frac{z_1(t)}{\sqrt{z_1(t)^2 + z_2(t)^2}}\right),
\end{cases} (1.2)$$

defined for $z_1^2 + z_2^2 \neq 0$. If (1.1) has an asymptotically stable periodic solution $x_0 = x_0(t)$ then, for $\epsilon > 0$ small enough, solutions of (1.2) with

$$\left\| \begin{bmatrix} z_1(0) \\ z_2(0) \\ z_3(0) \end{bmatrix} - \bar{z} \right\| \le \epsilon, \quad \bar{z} \begin{bmatrix} 1 \\ 0 \\ x_0(0) \end{bmatrix}$$

small enough satisfy

$$\lim_{t \to \infty} z_3(t) - x_0(t + \tau) = 0,$$

where $\tau \approx 0$ is defined by $z_2(-\tau) = 0$. In particular, the Euclidean volume of the image of the the ball of radius ϵ centered at \bar{z} under the differential flow defined by (1.2) converges to zero as $t \to \infty$. Since the volume is non-increasing when $\operatorname{trace}(A) \geq 0$, we conclude that $\operatorname{trace}(A) < 0$.

Problem T2.2

Function $g_1: \mathbf{R}^3 \mapsto \mathbf{R}^3$ is defined by

$$g_1\left(\left[\begin{array}{c} x_1\\ x_2\\ x_3 \end{array}\right]\right) = \left[\begin{array}{c} 1\\ x_1\\ 0 \end{array}\right].$$

(a) FIND A CONTINUOUSLY DIFFERENTIABLE FUNCTION $g_2: \mathbf{R}^3 \mapsto \mathbf{R}^3$ Such that the driftless system

$$\dot{x}(t) = g_1(x(t))u_1(t) + g_2(x(t))u_2(t) \tag{1.3}$$

IS COMPLETELY CONTROLLABLE ON \mathbb{R}^3 .

For

$$g_2(x) = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} = \text{const},$$

we have

$$g_3 = [g_1, g_2] = \left[\begin{array}{c} 0 \\ 1 \\ 0 \end{array} \right].$$

Since $g_1(x)$, g_2 , g_3 form a basis in \mathbb{R}^3 for all x, the resulting system (1.3) is completely controllable on \mathbb{R}^3 .

(b) FIND CONTINUOUSLY DIFFERENTIABLE FUNCTIONS $g_2: \mathbf{R}^3 \mapsto \mathbf{R}^3$ and $h: \mathbf{R}^3 \mapsto \mathbf{R}$ such that $\nabla h(\bar{x}) \neq 0$ for all $\bar{x} \in \mathbf{R}^3$ and h(x(t)) is constant on all solutions of (1.3). (Note: function g_2 in (B) does not have to be (and cannot be) the same as g_2 in (A).)

For example,

$$g_2(x) = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} = \text{const}, \ h \left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \right) = x_3.$$

(c) Find a continuously differentiable function $g_2: \mathbf{R}^3 \mapsto \mathbf{R}^3$ such that the driftless system (1.3) is not completely controllable on \mathbf{R}^3 , but, on the other hand, there exists no continuously differentiable function $h: \mathbf{R}^3 \mapsto \mathbf{R}$ such that $\nabla h(\bar{x}) \neq 0$ for all $\bar{x} \in \mathbf{R}^3$ and h(x(t)) is constant on all solutions of (1.3).

For

$$g_2(x) = \left[\begin{array}{c} 0 \\ x_1 \\ x_3 \end{array} \right],$$

we have

$$g_3 = [g_2, g_1] = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix},$$

and hence $g_1(x), g_2, g_3$ form a basis in \mathbf{R}^3 whenever $x_3 \neq 0$. This contradicts the condition that $\nabla h(x)$ must be non-zero ad orthogonal to $g_1(x), g_2$ (and hence to g_3) for all x.

Problem T2.3

AN ODE CONTROL SYSTEM MODEL IS GIVEN BY EQUATIONS

$$\begin{cases} \dot{x}_1(t) &= x_2(t)^2 + u(t), \\ \dot{x}_2(t) &= x_3(t)^2 + u(t), \\ \dot{x}_3(t) &= p(x_1(t)) + u(t). \end{cases}$$
(1.4)

(a) Find all polynomials $p: \mathbf{R} \mapsto \mathbf{R}$ such that system (1.4) is full state feedback linearizable in a neigborhood of $\bar{x} = 0$.

System (1.4) has the form

$$\dot{x}(t) = f(x(t)) + g(x(t))u(t),$$
 (1.5)

where

$$f\left(\left[\begin{array}{c} x_1 \\ x_2 \\ x_3 \end{array}\right]\right) = \left[\begin{array}{c} x_2^2 \\ x_3^2 \\ p(x_1) \end{array}\right], \quad g\left(\left[\begin{array}{c} x_1 \\ x_2 \\ x_3 \end{array}\right]\right) = \left[\begin{array}{c} 1 \\ 1 \\ 1 \end{array}\right].$$

Define

$$g_1 = g$$
, $g_2 = [f, g_1]$, $g_3 = [f, g_2]$, $g_{21} = [g_2, g_1]$,

i.e.

$$g_{2}\left(\left[\begin{array}{c} x_{1} \\ x_{2} \\ x_{3} \end{array}\right]\right) = \left[\begin{array}{c} 2x_{2} \\ 2x_{3} \\ \dot{p}(x_{1}) \end{array}\right], \ g_{3}\left(\left[\begin{array}{c} x_{1} \\ x_{2} \\ x_{3} \end{array}\right]\right) = \left[\begin{array}{c} 4x_{2}x_{3} - 2x_{3}^{2} \\ 2x_{3}\dot{p}(x_{1}) - 2p(x_{1}) \\ 2x_{2}\dot{p}(x_{1}) - \ddot{p}(x_{1})x_{2}^{2} \end{array}\right], \ g_{21}\left(\left[\begin{array}{c} x_{1} \\ x_{2} \\ x_{3} \end{array}\right]\right) = \left[\begin{array}{c} 2 \\ 2 \\ \ddot{p}(x_{1}) \end{array}\right].$$

For local full state feedback linearizability at x = 0 it is necessary and sufficient for vectors $g_1(0), g_2(0), g_3(0)$ to be linearly independent (which is equivalent to $p(0)\dot{p}(0) = 0$) and for $g_{21}(x)$ to be a linear combination of $g_1(x)$ and $g_2(x)$ for all x in a neighborhood of x = 0 (which is equivalent to $\ddot{p}(x_1) \equiv 2$). Hence

$$p(x_1) = x_1^2 + p_1 x_1 + p_0, \quad p_0 p_1 \neq 0$$

is necessary and sufficient for local full state feedback linearizability at x=0.

(b) For each polynomial p found in (a), design a feedback law

$$u(t) = K(x_1(t), x_2(t), x_3(t)) = K_p(x_1(t), x_2(t), x_3(t))$$

WHICH MAKES THE ORIGIN A LOCALLY ASYMPTOTICALLY STABLE EQUILIBRIUM OF (1.4).

Since $p(0) \neq 0$, x = 0 cannot be made into a locally asymptotically stable equilibrium of (1.4). However, the origin z = 0 (i.e. with respect to the new coordinates $z = \psi(x)$) of the feedback linearized system can be made locally asymptotically stable, as long as $0 \in \psi(\Omega)$ where Ω is the domain of ψ . Actually, this does not require any knowledge of the coordinate transform ψ , and can be done under an assumption substantially weaker than full state feedback linearizability!

Let

$$\dot{z}(t) = Az(t) + Bv(t) \tag{1.6}$$

be the feedback linearized equations (1.5), where

$$z(t) = \psi(x(t)), \quad x(t) \in \Omega, \quad v(t) = \alpha(x(t))(u - \beta(x(t))).$$

In other words, let

$$f(x) = [\dot{\psi}(x)]^{-1} [A\psi(x) - B\alpha(x)\beta(x)], \quad g(x) = [\dot{\psi}(x)]^{-1} B\alpha(x).$$

If $\bar{x} \in \Omega$ satisfies $\psi(\bar{x}) = 0$ then \bar{x} is a conditional equilibrium of (1.5), in the sense that

$$f(\bar{x}) + g(\bar{x})\bar{u} = 0$$

for $\bar{u} = \beta(\bar{x})$. Moreover, since the pair (A, B) is assumed to be controllable, the conditional equilibrium has a controllable linearization, in the sense that the pair $(\dot{f}(\bar{x}) + \dot{g}(\bar{x})\bar{u}, g(\bar{x}))$ is controllable as well, because

$$\dot{f}(\bar{x}) + \dot{g}(\bar{x})\bar{u} = S^{-1}(AS - BF), \ g(\bar{x}) = S^{-1}B\alpha(\bar{x})$$

for

$$S = \dot{\psi}(\bar{x}), \ F = \alpha(\bar{x})\dot{\beta}(\bar{x}).$$

It is easy to see that *every* conditional equilibrium \bar{x} of (1.5) with a controllable linearization can be made into a locally exponentially stable equilibrium by introducing feedback control

$$u(t) = \bar{u} + K(x(t) - \bar{x}),$$

where K is a constant gain matrix such that

$$\dot{f}(\bar{x}) + \dot{g}(\bar{x})\bar{u} + g(\bar{x})K$$

is a Hurwitz matrix. Indeed, by assumption \bar{x} is an equilibrium of

$$\dot{x}(t) = f_K(x) = f(x(t)) + g(x(t))(\bar{u} + K(x(t) - \bar{x})),$$

and

$$\dot{f}_K(\bar{x}) = \dot{f}(\bar{x}) + \dot{g}(\bar{x})\bar{u} + g(\bar{x})K.$$

In the case of system (1.4) let

$$\bar{x} = \left[\begin{array}{c} \bar{x}_1 \\ \bar{x}_2 \\ \bar{x}_3 \end{array} \right]$$

be a conditional equilibrium, i.e.

$$\bar{x}_1^2 = \bar{x}_2^2 = p(\bar{x}_1) = -\bar{u}.$$

Then

$$\dot{f}(\bar{x}) + \dot{g}(\bar{x})\bar{u} = \begin{bmatrix} 0 & \bar{x}_2 & 0 \\ 0 & 0 & 2\bar{x}_2 \\ \dot{p}(\bar{x}_1) & 0 & 0 \end{bmatrix}, \quad g(\bar{x}) = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}.$$

Hence a locally stabilizing controller is given by

$$u(t) = -\bar{x}_1^2 + k_1(x_1(t) - \bar{x}_1) + k_2(x_2(t) - \bar{x}_2) + k_3(x_3(t) - \bar{x}_3),$$

where the coefficients k_1, k_2, k_3 are chosen in such a way that

$$\begin{bmatrix} 0 & \bar{x}_2 & 0 \\ 0 & 0 & 2\bar{x}_2 \\ \dot{p}(\bar{x}_1) & 0 & 0 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \begin{bmatrix} k_1 & k_2 & k_3 \end{bmatrix}$$

is a Hurwitz matrix.

(c) FIND A C^{∞} FUNCTION $p: \mathbf{R} \mapsto \mathbf{R}$ FOR WHICH SYSTEM (1.4) IS GLOBALLY FULL STATE FEEDBACK LINEARIZABLE, OR PROVE THAT SUCH $p(\cdot)$ DOES NOT EXIST. Such $p(\cdot)$ does not exist. Indeed, otherwise vectors

$$\begin{bmatrix} 1\\1\\1 \end{bmatrix} \text{ and } \begin{bmatrix} 2x_2\\2x_3\\\dot{p}(x_1) \end{bmatrix}$$

are linearly independent for all real $\bar{x}_1, \bar{x}_2, \bar{x}_3$, which is impossible for

$$\bar{x}_2 = \bar{x}_3 = 0.5 \dot{p}(\bar{x}_1).$$