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Problem T2.1 

System of ODE equations 

ẋ(t) = Ax(t) + Bψ(Cx(t) + cos(t)), (1.1) 

where A, B, C are constant matrices such that CB = 0, and ψ : Rk is∈� Rq 

continuously differentiable, is known to have a locally asymptotically 
stable non-equilibrium periodic solution x = x(t). What can be said about 
trace(A) ? In other words, find the set � of all real numbers � such that 
� = trace(A) for some A, B, C, ψ such that (1.1) has a locally asymptotically 
stable non-equilibrium periodic solution x = x(t). 

Answer: trace(A) < 0. 
Let x0(t) be the periodic solution. Linearization of (1.1) around x0(·) yields 

α̇(t) = Aα(t) + Bh(t)Cα(t), 

where h(t) is the Jacobian of ψ at x0(t), and 

x(t) = x0(t) + α(t) + o( α(t) ).| |

Partial information about local stability of x0(·) is given by the evolution matrix M(T ), 
where T > 0 is the period of x0(·): if the periodic solution is asymptotically stable then 
all eigenvalues of M(T ) have absolute value not larger than one. Here 

Ṁ(t) = (A + Bh(t)C)M(t), M(0) = I, 
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and hence 
⎝⎛� T 

det M(T ) = exp trace(A + Bh(t)C)dt . 
0 

Since 
trace(A + Bh(t)C) = trace(A + CBh(t)) = trace(A), 

det(M(T )) > 1 whenever trace(A) > 0. Hence trace(A) ≈ 0 is a necessary condition for 
local asymptotic stability of x0(·). 

Since system (1.1) with k = q = 1, ψ(y) ≥ y, 
⎡ � ⎡ � 

A = 
−a 0 1 � � 

, B = , C = 0 1 
0 a 0−

has periodic stable steady state solution 
⎡ � 

(1 + a2)−1 cos(t) + a(1 + a2)−1 sin(t)) 
x0(t) = 

0 

for all a > 0, the trace of A can take every negative value. Thus, to complete the solution, 
one has to figure out whether trace of A can take the zero value. 

It appears that the volume contraction techniques are better suited for solving the 
question completely. Indeed, consider the autonomous ODE 

⎞ 
⎨ ż1(t) = z2(t), 
⎨ 
⎠ 

ż2(t) = z1(t), 
⎛ − ⎝ (1.2) 

⎨ z1(t) 
⎨ 
⎧ ż3(t) = Az3(t) + Bψ Cz3(t) + �

z1(t)2+z2(t)2 
, 

2defined for z1 + z2
2 ∞= 0. If (1.1) has an asymptotically stable periodic solution x0 = x0(t) 

then, for δ > 0 small enough, solutions of (1.2) with 
�⎪ ⎣ � ⎪ ⎣ 
� z1(0) � 1 
�� z2(0) ⎤ − z̄

� ≈ δ, z̄ � 0 ⎤ 
� z3(0) � x0(0) 

small enough satisfy 
lim z3(t) − x0(t + β) = 0, 
t�� 

where β � 0 is defined by z2(−β) = 0. In particular, the Euclidean volume of the image of 
the the ball of radius δ centered at z̄ under the differential flow defined by (1.2) converges 
to zero as t � →. Since the volume is non-increasing when trace(A) √ 0, we conclude 
that trace(A) < 0. 
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Problem T2.2


Function g1 : R3 ∈� R3 is defined by 
⎩⎪ ⎣� ⎪ ⎣ 

x1 1 
g1 ⎦� x2 ⎤� = � x1 ⎤ . 

x3 0 

(a)	 Find a continuously differentiable function g2 : R3 ∈� R3 such that 
the driftless system 

ẋ(t) = g1(x(t))u1(t) + g2(x(t))u2(t)	 (1.3) 

is completely controllable on R3 . 

For	
⎪ ⎣ 

1

g2(x) = � 0 ⎤ = const,


1


we have 
⎪ ⎣


0

g3 = [g1, g2] = � 1 ⎤ .


0


Since g1(x), g2, g3 form a basis in R3 for all x, the resulting system (1.3) is completely 
controllable on R3 . 

(b) Find continuously differentiable functions g2 : R3 ∈� R3 and h : R3 ∈� 
x) = 0 for all ¯R such that ≡h(¯ ∞ x ≤ R3 and h(x(t)) is constant on all 

solutions of (1.3). (Note: function g2 in (b) does not have to be (and 
cannot be) the same as g2 in (a).) 

For example, 
⎪	 ⎣ ⎩⎪ ⎣� 

1 x1


g2(x) = � 1 ⎤ = const, h ⎦� x2 ⎤� = x3.

0 x3


(c)	 Find a continuously differentiable function g2 : R3 ∈� R3 such that 
the driftless system (1.3) is not completely controllable on R3, but, 
on the other hand, there exists no continuously differentiable func-

x) = 0 for all ¯tion h : R3 ∈� R such that ≡h(¯ ∞ x ≤ R3 and h(x(t)) is 
constant on all solutions of (1.3). 

For 
⎪ ⎣ 

0 
g2(x) = � x1 ⎤ , 

x3 
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we have 
⎪ ⎣


0

g3 = [g2, g1] = � 1 ⎤ ,


0


and hence g1(x), g2, g3 form a basis in R3 whenever x3 = 0. This contradicts the ∞
condition that ≡h(x) must be non-zero ad orthogonal to g1(x), g2 (and hence to g3)

for all x.


Problem T2.3 

An ODE control system model is given by equations 
⎞ 
⎠ ẋ1(t) = x2(t)

2 + u(t), 
ẋ2(t) = x3(t)

2 + u(t), (1.4) 
⎧ 

ẋ3(t) = p(x1(t)) + u(t). 

(a)	 Find all polynomials p : R ∈� R such that system (1.4) is full state

feedback linearizable in a neigborhood of x = 0.
¯

System (1.4) has the form 

ẋ(t) = f(x(t)) + g(x(t))u(t),	 (1.5) 

where 
⎩⎪ ⎣� ⎪ ⎣ ⎩⎪ ⎣� ⎪ ⎣

2x1 x2 x1 1 
f ⎦� x2 ⎤� = � x2 

⎤ , g ⎦� x2 ⎤� = � 1 ⎤ .3 

x3 p(x1) x3 1 

Define

g1 = g, g2 = [f, g1], g3 = [f, g2], g21 = [g2, g1],


i.e. 
⎩⎪ ⎣� ⎪ ⎣ ⎩⎪ ⎣� ⎪	 ⎣ ⎩⎪ ⎣� ⎪ ⎣

2x1 2x2 x1 4x2x3 − 2x3 x1 2 
⎦� x2 ⎤� = � 2x3 ⎤ , g3 ⎦� ⎤� = � 2x3ṗ(x1) − 2p(x1) ⎤ , g21 ⎦� x2 ⎤� = � 2 ⎤ .g2 x2


2
x3 ṗ(x1) x3 2x2ṗ(x1) − p̈(x1)x2 x3 p̈(x1) 

For local full state feedback linearizability at x = 0 it is necessary and sufficient

for vectors g1(0), g2(0), g3(0) to be linearly independent (which is equivalent to

p(0) ̇p(0) = 0) and for g21(x) to be a linear combination of g1(x) and g2(x) for

all x in a neigborhood of x = 0 (which is equivalent to p̈(x1) ≥ 2). Hence


2 p(x1) = x1 + p1x1 + p0, p0p1 = 0 ∞

is necessary and sufficient for local full state feedback linearizability at x = 0. 
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(b) For each polynomial p found in (a), design a feedback law 

u(t) = K(x1(t), x2(t), x3(t)) = Kp(x1(t), x2(t), x3(t)) 

which makes the origin a locally asymptotically stable equilibrium 
of (1.4). 

Since p(0) = 0, x = 0 cannot be made into a locally asymptotically stable equilib-∞
rium of (1.4). However, the origin z = 0 (i.e. with respect to the new coordinates 
z = �(x)) of the feedback linearized system can be made locally asymptotically 
stable, as long as 0 ≤ �(�) where � is the domain of �. Actually, this does not 
require any knowledge of the coordinate transform �, and can be done under an 
assumption substantially weaker than full state feedback linearizability! 

Let 
ż(t) = Az(t) + Bv(t) (1.6) 

be the feedback linearized equations (1.5), where 

z(t) = �(x(t)), x(t) ≤ �, v(t) = �(x(t))(u − λ(x(t))). 

In other words, let 

˙ ˙f(x) = [�(x)]−1[A�(x) − B�(x)λ(x)], g(x) = [�(x)]−1B�(x). 

If ¯ x) = 0 then ¯x ≤ � satisfies �(¯ x is a conditional equilibrium of (1.5), in the sense 
that 

f(¯ x)¯x) + g(¯ u = 0


for u = λ(¯
¯ x). Moreover, since the pair (A, B) is assumed to be controllable, the 
conditional equilibrium has a controllable linearization, in the sense that the pair 
(ḟ(¯ x)¯ x)) is controllable as well, because x) + ġ(¯ u, g(¯

ḟ(¯ x)¯ x) = S−1B�(¯x) + ġ(¯ u = S−1(AS − BF ), g(¯ x) 

for

x), F = �(¯ x).
S = �̇(¯ x)λ̇(¯


It is easy to see that every conditional equilibrium ¯
x of (1.5) with a controllable lin­
earization can be made into a locally exponentially stable equilibrium by introducing 
feedback control 

u(t) = ¯ x),u + K(x(t) − ¯


where K is a constant gain matrix such that


ḟ(¯ x)¯ x)Kx) + ġ(¯ u + g(¯
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is a Hurwitz matrix. Indeed, by assumption x̄ is an equilibriun of 

ẋ(t) = fK (x) = f (x(t)) + g(x(t))(¯ x)),u + K(x(t) − ¯

and 
ḟK (¯ x) + ġ(¯ u + g(¯x) = ḟ(¯ x)¯ x)K. 

In the case of system (1.4) let 
⎪ ⎣ 

x̄1 

x = � x2 ⎤ ¯ ¯
x̄3 

be a conditional equilibrium, i.e. 

¯2 ¯2 x1 = x = p(¯ u.x1) = −¯2 

Then 
⎪	 ⎣ ⎪ ⎣ 

¯0 x2 0 1 
ḟ(¯ x)¯ x2 ⎤ , g(¯x) + ġ(¯ u = � 0 0 2¯ x) = � 1 ⎤ . 

ṗ(x̄1) 0 0 1 

Hence a locally stabilizing controller is given by 

2 u(t) = −¯1 + k1(x1(t) − ¯	 x2) + k3(x3(t) − ¯x x1) + k2(x2(t) − ¯	 x3), 

where the coefficients k1, k2, k3 are chosen in such a way that 
⎪ ⎣ ⎪ ⎣ 

0 x̄2 0 1 
� � 

� 0 0 2x̄2 ⎤ + � 1 ⎤ k1 k2 k3 

ṗ(x̄1) 0 0 1 

is a Hurwitz matrix. 

(c)	 Find a C� function p : R ∈� R for which system (1.4) is globally full 
state feedback linearizable, or prove that such p(·) does not exist. 

Such p(·) does not exist. Indeed, otherwise vectors 
⎪ ⎣ ⎪ ⎣ 

1 2x2 
� 1 ⎤ and � 2x3 ⎤ 

1 ṗ(x1) 

are linearly independent for all real ¯ x2, ¯x1, ¯ x3, which is impossible for 

¯ ¯ p(¯x2 = x3 = 0.5 ̇ x1). 


