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Problem T1.1

FIND ALL VALUES OF i € R FOR WHICH THE FUNCTION V : R?— R, DEFINED BY

V(]2 ]) = maxinlle)

IS MONOTONICALLY NON-INCREASING ALONG SOLUTIONS OF THE ODE

{x'l(t) = pay(t) + sin(z2(2)),

To(t) = pxo(t) —sin(x(t)).

Answer: < —1.

Proof For y < —1, 21 # 0 we have
1d
Q%xf = pad 4z sin(z,)

< —lwa|(Ja] = J2l),

and hence |x;] is strictly monotonically decreasing when « # 0 and |z1| > |z2|. Similarly,

| 5] is strictly monotonically decreasing when x # 0 and |x2| > |x1|. Hence, when p < —1,

V() is strictly monotonically decreasing along non-equilibrium trajectories of the system.
For > 1, 21(0) = r, 25(0) = r, where r > 0 is sufficiently small we have

t1(0) = pr — sin(r) > 0,

hence
V(z(t)) > z1(t) > r =V (xz(0))

when ¢ > 0 is small enough, which proves that V' is not monotonically decreasing.
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Problem T1.2

FIND ALL VALUES OF 7 € R FOR WHICH DIFFERENTIAL INCLUSION OF THE FORM
@(t) € n(x(t)), z(0)= T,
2 R’
WHERE 7 : R’ 2 IS DEFINED BY
n(@) ={f(z/|z])} for z#0,

n(0) = {f(v): y= ;5] € R?, |yi| +|wa| <7},

HAS A SOLUTION 7 : [0,00) — R? FOR EVERY CONTINUOUS FUNCTION f: R?+— R?
AND FOR EVERY INITIAL CONDITION T, € R2.
Answer: 1 > /2.

Proof First, let us show that existence of solutions is not guaranteed when r < V2. Let
¢ > 0 be such that 2¢ < v/2 — r. Define

f T _ 0.5v2(1 — €) — a3
T2 0.5v2(1 — €) — 5
Let us show that, for this f, the differential inclusion #(t) =€ n(x(t)) will have no solutions
z: [0,00) — R? with 2(0) = 0. Indeed, since

o' f(x/lz]) <0 V x#0,z € R?,

|z(t)| is strictly monotonically decreasing when x(t) # 0. Therefore z(0) = 0 implies
z(t) = 0 for t > 0. Hence #(t) = 0 € n(0). However, for 7 < v/2, and for this particular
selection of f(+), zero is not an element of 7(0). The contradiction shows that no solution
with x(0) = 0 exists.

To prove existence of solutions for r > /2, one is tempted to use the existence theorem
relying on convexity and semicontinuity of 7(-). However, these assumptions are not
necessarily satisfied in this case, since the set 7(0) does not have to be convex. Instead,
note that, by the continuity of f, existence of a solution x : [to, %o + |To|/M) — R? with
x(tg) = Zo is guaranteed for all Zo # 0. Hence, it is sufficient to show that a solution
zo : [0,00) — R? with 2¢(0) = 0 exists.

To do this, consider two separate cases: 0 € 1n(0) and 0 ¢ 7n(0). If 0 € n(0) then
z(t) = 0 is the desired solution of the differential inclusion. Let us show that 0 ¢ 7n(0)
implies existence of a solution ¢ € (0,00), |u| = 1 of the equation f(u) = qu. Indeed, if
0 & n(0) and r > /2 then 0 # f(ru) for all 7 € [0,1], |u| = 1, and hence

 frw)
() = 1w




is a homotopy between the vector fields f1 : u — f(u)/|f(uw)| and fo: w— f(0)/]f(0)].
Since the index of the constant map fy is zero, the index of f; is zero as well. However,
assuming that f(u) # qu for g € (0,00), |u| =1 yields a homotopy

. Tu+ (1 —7)f(u)
[T+ (1—7)f(u)]

(7, u)

between f; and the identity map, which is impossible, since the identity map has index 1.
Hence f(u) = qu for some ¢ > 0, |u| = 1, which yields z¢(t) = qtu as as a valid

solution zg : [0,00) + R? of the differential inclusion.
|

Problem T1.3

FIND ALL VALUES ¢,r € R FOR WHICH Z( = 0 1S not A (LOCALLY) STABLE EQUILIBRIUM
OF THE ODE
x(t) = Ax(t) + B((J:zc(t))l/3 (1.1)

FOR EVERY SET OF MATRICES A, B,C' OF DIMENSIONS n-BY-n, n-BY-1, AND 1-BY-n
RESPECTIVELY, SUCH THAT A 1S A HURWITZ MATRIX AND

Re[(1 + jwq)G(jw)] >r VweR (1.2)

FOR
G(s) =C(sI — A)'B.

Answer: r > 0, ¢ € R arbitrary (note, however, that for » > 0 (1.2) implies ¢ > 0).

Proof Ifr <0, take A= —1, B=0, C' =1 to get an example of A, B, C satisfying the
conditions and such that zo = 0 is a (globally asymptotically) stable equilibrium of (1.1).

Now consider the case r > 0. Then, informally speaking, the frequency domain
condition means some sort of “passivity” of GG, while (1.1) describes a positive feedback
interconnection of G with nonlinearity y — w = y?, which can be characterized as
having arbitrarily large positive gain for  ~ 0. Hence one expects instability of the zero
equilibrium of (1.1).

To show local instability, let us prove existence of a Lyapunov function V' = V(z) for
which 0 is not a local minimum, and

d

EV(m(t)) < 0 whenever |Cz(t)| € (0,¢)

for some ¢y > 0. Note that this will imply instability of the equilibrium zo = 0, since
every solution with V(z(0)) < V(0) and |z(0)| < €,/2|C| will eventually cross the sphere
|z(0)| = €0/2|C| (otherwise |Cz(t)| < €/2 for all ¢ > 0, hence V(z(t)) is monotonically



non-increasing, and all limit points Z of x(-) satisfy Cz = 0, therefore every solution . (¢)
of (1.1) beginning at such limit point satisfies Cz,(t) = 0 and hence converges to the
origin, which contradicts V(x(0)) < V(0)).

By introducing w(t) = (Cx(t))'/3, system equations can be re-written in the form

t(t) = Axz(t) + Bw(t).

Consider first the (simpler) case when r > 0 (and hence ¢ > 0). Then one can use the
inequality
w(t)Ca(t) < rlw(t)f?,

for sufficiently small |C'z(¢)|. Condition (1.2) together with the KYP Lemma yields exis-
tence of a matrix P = P’ such that

wCZT + quwC (AT + Bw) — r|w|* > 22'P(Az + Bw) V7 € R",w € R.
Substituting w = (Cz)'/3, we get

d
E[a:’Px — 0.75q|Cz|*?] < |Cz|*3 — r|Cx)??,

which is exactly what is needed, because y*/® — ry?/3 < 0 for y € (0, /7). In addition, for
every To € R" such that C'zy # 0 the expression

V(%) = &Pt — 0.75¢|Cz|*?

is negative when * = rzy and r > 0 is small enough.
To prove the answer in the general case, note that the inequality

w(t)Cx(t) > R|Cx(t)|?

is satisfied whenever |Cz(t)] € (0,¢) with ¢ > 0 and R = ¢ 2/3, i.e. R can be made
arbitrarily large by selecting an appropriate € > 0. Therefore the derivative bound for
V(z(t)) = x(t) Px(t) will hold if

27 P(Az + Bw) < R|Cz|* —wCz V1 €R",weR. (1.3)
According to the KYP Lemma, such P = P’ exists if
R|G(jw)]? — Re(G(jw)) >0 Y w € R,

or, equivalently,
Re(1/G(jw)) < R Yw € R.

Moreover, substituting w = (R + K)Cz, where K > 0 is a constant, into (1.3) yields

P(A+ BKC)+ (A+ BKC)P < —-KC'C.



Therefore, P = P’ cannot be positive semidefinite if A + BKC has eigenvalues with
positive real part.

We will rely on the following statement from the linear system theory: if H(s) is a
stable proper rational transfer function which is positive real (i.e. Re(H (jw)) > 0 for all
w € R) then Re(s) > 0 whenever Re(s) > 0, and the relative degree of H is not larger
than one.

Consider H(s) = (1 + ¢s)G(s). By assumption, H is positive real and proper. Hence
q > 0 (otherwise H(—1/q) = 0). If relative degree of H is zero then ¢ > 0, and hence
sG(s) converges to a non-zero limit H, as s — oo. Since (1 + ¢r)G(r) > 0 for r > 0, it
follows that H, > 0, and hence

1 Jw
G a6

is bounded as w — oo.
If relative degree of H is one then sH(s) converges to a positive limit as s — oo, and
hence

1. = ReM
G(jw) (Jw)*G(5w)
is bounded from above as w — oco. Finally, since G(r) > 0 and G(r) — 0 as r — 400,
it follows that the equation 1 = K'G(r) has a positive solution r for all sufficiently large
K > 0. Hence matrix A+ BKC' has a positive eigenvalue for all sufficiently large K > 0.
|
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