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Take-Home Test 1 Solutions1 

Problem T1.1 

Find all values of µ ≤ R for which the function V : R2 ∞≈ R, defined by 

x̄1V 
¯

= max{|x̄1 , ¯
x2 

| |x2|} 

is monotonically non-increasing along solutions of the ODE 

ẋ1(t) = µx1(t) + sin(x2(t)), 
ẋ2(t) = µx2(t) − sin(x1(t)). 

Answer: µ ∀ −1.

Proof For µ ∀ −1, x1 = 0 we have
∈

1 d 
2 2 x
1 = µx

1 + x1 sin(x2)
2 dt 

< ( x1 x2 ),−|x1| | | − | |
and hence x1 is strictly monotonically decreasing when x = 0 and x1 x2 . Similarly, | | ∈ | | √ | |
x2 is strictly monotonically decreasing when x = 0 and x2 x1 . Hence, when µ ∀ −1,| | ∈ | | √ | |
V (x) is strictly monotonically decreasing along non-equilibrium trajectories of the system. 

For µ > 1, x1(0) = r, x2(0) = r, where r > 0 is sufficiently small we have 

ẋ1(0) = µr − sin(r) > 0, 

hence 
V (x(t)) √ x1(t) > r = V (x(0)) 

when t > 0 is small enough, which proves that V is not monotonically decreasing. 

1Version of October 20, 2003 
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Problem T1.2 

Find all values of r ≤ R for which differential inclusion of the form 

ẋ(t) ≤ �(x(t)), x(0) = x̄0, 

where � : R2 is defined by ∞≈ 2R
2 

�(¯ x/|x|)} for ¯ ∈x) = {f(¯ ¯ x = 0, 

�(0) = {f(y) : y = [y1; y2] ≤ R2 , y1 + y2 ∀ r},| | | | 
has a solution x : [0,→) ∞≈ R2 for every continuous function f : R2 ∞≈ R2 

and for every initial condition ¯
Answer: r √

�
2. 

x0 ≤ R2 . 

Proof First, let us show that existence of solutions is not guaranteed when r < 
�

2. Let 
τ > 0 be such that 2τ < 

�
2 − r. Define 
�� �
 � � 

x1 0.5
�

2(1 − τ) − x1f = . 
x2 0.5

�
2(1 − τ) − x2 

Let us show that, for this f , the differential inclusion ẋ(t) =≤ �(x(t)) will have no solutions 
x : [0,→) ∞≈ R2 with x(0) = 0. Indeed, since 

x �f(x/|x|) < 0 x = 0, x ≤ R2 ,� ∈

x(t) is strictly monotonically decreasing when x(t) = 0. Therefore x(0) = 0 implies | | ∈
x(t) = 0 for t √ 0. Hence ẋ(t) = 0 ≤ �(0). However, for r < 

�
2, and for this particular 

selection of f(·), zero is not an element of �(0). The contradiction shows that no solution 
with x(0) = 0 exists. 

To prove existence of solutions for r √
�

2, one is tempted to use the existence theorem 
relying on convexity and semicontinuity of �(·). However, these assumptions are not 
necessarily satisfied in this case, since the set �(0) does not have to be convex. Instead, 
note that, by the continuity of f , existence of a solution x : [t0, t0 + x̄0 with| |/M) ∞≈ R2 

x0 is guaranteed for all ¯x(t0) = ¯ x0 = 0. Hence, it is sufficient to show that a solution ∈
x0 : [0,→) ∞≈ R2 with x0(0) = 0 exists. 

To do this, consider two separate cases: 0 ≤ �(0) and 0 ∈≤ �(0). If 0 ≤ �(0) then 
x(t) ≥ 0 is the desired solution of the differential inclusion. Let us show that 0 ∈≤ �(0) 
implies existence of a solution q ≤ (0,→), u = 1 of the equation f(u) = qu. Indeed, if 
0 ∈≤ �(0) and r √

�
2 then 0 = f(�u) for all 

|
�
|
≤ [0, 1], u = 1, and hence ∈ | | 

f(�u)
(�, u) ∞≈ 

f(�u)| | 
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is a homotopy between the vector fields f1 : f(u) and f0 : u ∞≈ f(0)/ f(0) .u ∞≈ f(u)/| | | |
Since the index of the constant map f0 is zero, the index of f1 is zero as well. However, 
assuming that f(u) = qu for q ≤ (0, →), u = 1 yields a homotopy ∈ | | 

(�, u) ∞≈ 
�u + (1 − �)f(u) 
�u + (1 − �)f(u)| | 

between f1 and the identity map, which is impossible, since the identity map has index 1. 
Hence f(u) = qu for some q > 0, u = 1, which yields x0(t) = qtu as as a valid | |

solution x0 : [0, →) ∞≈ R2 of the differential inclusion. 

Problem T1.3 

Find all values q, r ≤ R for which x̄0 = 0 is not a (locally) stable equilibrium 
of the ODE 

ẋ(t) = Ax(t) + B(Cx(t))1/3 (1.1) 

for every set of matrices A, B, C of dimensions n-by-n, n-by-1, and 1-by-n 
respectively, such that A is a Hurwitz matrix and 

Re[(1 + j�q)G(j�)] > r � � ≤ R (1.2) 

for 
G(s) = C(sI − A)−1B. 

Answer: r √ 0, q ≤ R arbitrary (note, however, that for r √ 0 (1.2) implies q √ 0). 

Proof If r < 0, take A = −1, B = 0, C = 1 to get an example of A, B, C satisfying the 
conditions and such that x̄0 = 0 is a (globally asymptotically) stable equilibrium of (1.1). 

Now consider the case r 0. Then, informally speaking, the frequency domain √
condition means some sort of “passivity” of G, while (1.1) describes a positive feedback 

y1/3interconnection of G with nonlinearity y ∞≈ w = , which can be characterized as 
having arbitrarily large positive gain for x � 0. Hence one expects instability of the zero 
equilibrium of (1.1). 

To show local instability, let us prove existence of a Lyapunov function V = V (x) for 
which 0 is not a local minimum, and 

d 
V (x(t)) < 0 whenever Cx(t) ≤ (0, τ0)

dt 
| | 

for some τ0 > 0. Note that this will imply instability of the equilibrium x̄0 = 0, since 
every solution with V (x(0)) < V (0) and x(0) < τ0/2 C will eventually cross the sphere | | | |
x(0) = τ0/2 C (otherwise Cx(t) ∀ τ0/2 for all t √ 0, hence V (x(t)) is monotonically | | | | | | 
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x of x(·) satisfy C¯non-increasing, and all limit points ¯ x = 0, therefore every solution x�(t) 
of (1.1) beginning at such limit point satisfies Cx�(t) = 0 and hence converges to the 
origin, which contradicts V (x(0)) < V (0)). 

By introducing w(t) = (Cx(t))1/3, system equations can be re-written in the form 

ẋ(t) = Ax(t) + Bw(t). 

Consider first the (simpler) case when r > 0 (and hence q > 0). Then one can use the 
inequality 

w(t)Cx(t) ∀ r w(t) 2 ,| | 
for sufficiently small Cx(t) . Condition (1.2) together with the KYP Lemma yields exis­| |
tence of a matrix P = P � such that 

wC¯ wC(A¯ w) − r w √ 2¯�P (A¯ w) � ¯ w ≤ R.¯ x + q ¯ x + B ¯ x x + B ¯ x ≤ Rn , ¯| ¯| 2 

Substituting w = (Cx)1/3, we get 

d 
[x �Px − 0.75q Cx| 4/3] ∀ |Cx 4/3 − r Cx| 2/3 ,

dt
| | |

which is exactly what is needed, because y4/3 − ry2/3 < 0 for y ≤ (0, 
�

r). In addition, for 
x0 ≤ Rn such that C¯every ¯ x0 = 0 the expression ∈

x) = ¯�P ̄ xV (¯ x x − 0.75q C¯ 4/3 | | 

x = r¯is negative when ¯ x0 and r > 0 is small enough. 
To prove the answer in the general case, note that the inequality 

w(t)Cx(t) > R Cx(t) 2 | | 

is satisfied whenever Cx(t) ≤ (0, τ) with τ > 0 and R = τ−2/3, i.e. R can be made | |
arbitrarily large by selecting an appropriate τ > 0. Therefore the derivative bound for 
V (x(t)) = x(t)�Px(t) will hold if 

2¯ x + B ¯ x 2 − ¯ x x ≤ Rn , ¯x �P (A¯ w) ∀ R C¯ wC¯ � ¯ w ≤ R. (1.3)| | 

According to the KYP Lemma, such P = P � exists if 

R G(j�) 2 − Re(G(j�)) > 0 � � ≤ R,| | 

or, equivalently, 
Re(1/G(j�)) < R � � ≤ R. 

Moreover, substituting w = (R + K)Cx, where K > 0 is a constant, into (1.3) yields 

P (A + BKC) + (A + BKC)�P ∀ −KC �C. 
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Therefore, P = P � cannot be positive semidefinite if A + BKC has eigenvalues with 
positive real part. 

We will rely on the following statement from the linear system theory: if H(s) is a 
stable proper rational transfer function which is positive real (i.e. Re(H(j�)) > 0 for all 
� ≤ R) then Re(s) > 0 whenever Re(s) > 0, and the relative degree of H is not larger 
than one. 

Consider H(s) = (1 + qs)G(s). By assumption, H is positive real and proper. Hence 
q √ 0 (otherwise H(−1/q) = 0). If relative degree of H is zero then q > 0, and hence 
sG(s) converges to a non-zero limit H� as s ≈ →. Since (1 + qr)G(r) > 0 for r > 0, it 
follows that H� > 0, and hence 

Re 
1 

= Re 
j� 

G(j�) G(j�) 

is bounded as � ≈ →. 
If relative degree of H is one then sH(s) converges to a positive limit as s ≈ →, and


hence 
1 j� − (j�)2 

Re = Re 
G(j�) (j�)2G(j�) 

is bounded from above as � ≈ →. Finally, since G(r) > 0 and G(r) ≈ 0 as r ≈ +→, 
it follows that the equation 1 = KG(r) has a positive solution r for all sufficiently large 
K > 0. Hence matrix A + BKC has a positive eigenvalue for all sufficiently large K > 0. 


