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Problem 7.1

A STABLE LINEAR SYSTEM WITH A RELAY FEEDBACK EXCITATION IS MODELED BY
i(t) = Az(t) + Bsgn(Cz(t)), (7.1)

WHERE A IS A HURWITZ MATRIX, B IS A COLUMN MATRIX, C' IS A ROW MATRIX, AND
sgn(y) DENOTES THE SIGN NONLINEARITY

1, y > 0,
Sgn(y) = 07 y= Oa
-1, y<0.

FOr T > 0, A 2T-PERIODIC SOLUTION = = z(t) OF (7.1) IS CALLED A regular unimodal
limit cycle 17 Cx(t) = —Cx(t +T) > 0 FOR ALL t € (0,T), AND C'Az(0) > |CB].

(a) DERIVE A NECESSARY AND SUFFICIENT CONDITION OF EXPONENTIAL LOCAL
STABILITY OF THE REGULAR UNIMODAL LIMIT CYCLE (ASSUMING IT EXISTS AND
A, B,C,T ARE GIVEN).

Let Y denote the set of all £ € R" such that Cz = 0.

Let zy = x(0). By assumptions, Cz(t) > 0 and Cz(—t) = Cx(T —t+T) =
—Cz(T —t)<0forte (0,7). Hence Cz(0) = Cxg=0,ie x9 €Y.

Let FF: R x Y be defined by

F(t,z)=eMz+ A7'B) - A7'B.
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By definition F(,Z) is the value at ¢ = 7 of the solution z = z(t) of the ODE
dz/dt = Az + B. Since F(t,z9) > 0 for t € (0,7) and
dF
dt
whenever z € Y is sufficiently close to zy, we conclude that F(t,z) > 0 for all
t € (0,7T) and for all z € Y sufficiently close to zy.

On the other hand,

F
%(T, x9) = C(Az(T)+ B) = —CAxy + CB < 0.

Hence, by the implicit mapping theorem, for z € Y sufficiently close to x(y equation
CF(t,z) = 0 has a unique solution ¢ = h(Z) in a neighorhood of t =T,

(0,7) = C(AZ+ B) =~ C(Azo+ B) >0

Consider the map S defined for ;1 € Y in a neigborhood of zq by S(z;) =
F(h(xy),z1). Essentially, S is the Poincare map associated with the periodic so-
lution x = z(t). Local exponential stability of the trajectory of x = x(t) is therefore
equivalent to local exponential stability of the equilibrium zq of S.

The differential of S at x, is the composition of e” and the projection on Y parallel
to Az(T) + B = B — Axy. In other words, the differential of S has matrix

S(zg) = T — [C(B — Az)|"Y(B — Azg)CeT

in the standard basis of R". In order for the limit cycle x = x(t) to be locally
exponentially stable, all eigenvalues of this matrix should have absolute value smaller
than 1.

USE THE RESULT FROM (A) TO FIND AN EXAMPLE OF SYSTEM (7.1) WITH A
HURWITZ MATRIX A AND AN unstable REGULAR UNIMODAL LIMIT CYCLE.

The MATLAB code is provided in file hw7_1_6243_ 2003.m. To generate examples
of unimodal lmit cycles, take a Hurwitz polynomial p and first constract A, B from
a state space realization of transfer function G(s) = 1/p(s). Use T' = 1, and find z,
from equation F (T, zq) = —xy, i.e.

zo = (I + )™ —e*A™'B.
Then construct C' such that Cxqg = 0, CB = 1, and CAxg = r where r > 1 is a
parameter to be tuned up to achieve instability of the limit cycle. Check whether

the resulting trajectory x = x(t) is indeed a unimodal limit cycle by verifying the
inequality Cz(t) > 0 for ¢ € (0,7 (this step is not necessary when n = 3).

Numerical calculations show that using n = 3 and r ~ 1 typically yields an unstable
unimodal limit cycle as, for example, with

p(s) = (s+1)% r=15.



Problem 7.2

A LINEAR SYSTEM CONTROLLED BY MODULATION OF ITS COEFFICIENTS IS MODELED
BY
#(t) = (A + Bu(t))x(t), (7.2)

WHERE A, B ARE FIXED n-BY-n MATRICES, AND u(t) € R 1S A SCALAR CONTROL.

(a) IS IT POSSIBLE FOR THE SYSTEM TO BE CONTROLLABLE OVER THE SET OF ALL
NON-ZERO VECTORS z € R", z # 0, WHEN n > 37 IN OTHER WORDS, IS IT
POSSIBLE TO FIND MATRICES A, B WITH n > 2 SUCH THAT FOR EVERY NON-
ZERO T,Z; THERE EXIST 7' > 0 AND A BOUNDED FUNCTION u : [0,7] — R
SUCH THAT THE SOLUTION OF (7.2) WITH x(0) = Zy SATISFIES z(T") = 7,7

The answer to this question is positive (examples exist for all n > 1). One such
example is given by

A=05(a+p), B=I+05(a-7),

where

0 0 10
1|, B=|-10 0
0 0 00

0 O
a=1]10 0

0 —1
To show that the resulting system (7.2) is controllable over the set of non-zero states,
note first that the auxiliary driftless system with three scalar controls

T = axuy + Brus + rus

satisfies the conditions of complete controllability for all  # 0. Indeed, the Lie
bracket g = [g1, go] of the “linear” vector fields gi(x) = Agz is given by g(z) = Ax,
where A = [Ay, Ag] = A1 Ay — Ay Ayis the commutant of matrices A; and As. Hence
for g1(x) = ax, go(x) = Pz, and g3 = [g1, g2] we have g3(x) = yx, where

00 -1
=10 0 0
1 0 0
Since the matrix
1 X2 ry —I3
[x ax fr vyx]= | 22 —x1 X3 T2
T3 T3 —xT2 T

has full rank whenever = = [x1; z9; 23] # 0, the auxiliary system is fully controllable
for x # 0.



Since the auxiliary system is fully controllable for x # 0, it is also fully controllable
using piecewise constant controls along the vector fields x, ax, fz. Note that the
flow along az is given by S!(x) = e®*z. Since e*™ = I, negative time flows along
ax can be implemented using positive time flows. Same conclusion is also true for
B. Since the flows along (A + B)r = ax + z and (A — B)z = fx — z differ from
the flows along ax and (Bx only in scaling of the trajectory, we conclude that for
every non-zero 1, 7o € R? there exists a (picewise constant) control u which moves
x1 to pxy for some p > 0. Therefore, for every non-zero xy, x5 € R? there exists a
(picewise constant) control w which moves x; first to paa, then to pgrs, and then
to pro, where

1 0
To= |0 |, 2g= |0
0 1
Note that the line
{cx,: c€R}

is invariant for flow defined by te vector field ax + z, and the flow moves points of
this line monotonically from the origin. Similarly, the line

{cxg: ceR}

is invariant for flow defined by te vector field Sx — x, and the flow moves points of
this line monotonically to the origin. Hence, there also exists a piecewise constant
control u which moves x; first to p,zs, then to c,pazq, then to copgrs, then to
cgcapprp and then to c,cppre, where c,, cg are arbitrary positive numbers such that
co > 1 and cg < 1. Selecting c,, cg in such a way that c,csp = 1 yields a trajectory
from x; to xs.

While the “theoretical” derivation above is easy to generalize to higher dimensions,
there exists a rather simple explicit algorithm for moving from a given vector x; # 0
to a given vector xo # 0 using not more than five switches of the piecewise constant
control value u(t) € {—1,1}.

IS IT POSSIBLE FOR THE SYSTEM TO BE FULL STATE FEEDBACK LINEARIZABLE
IN A NEIGBORHOOD OF SOME POINT T, € R" FOR SOME n > 27
The answer to this question is positive (examples exist for all n > 1).

To find an example, search for a linear output y = Cxz of relative degree n. This
requires

CB=0, CAB=0, ... CA"?B =0, CA"'Bz, # 0.

In particular, for n = 3 one can take

000 010 1
C=[100,B=]000|,A=]001]|,z=]0
100 000 0



Problem 7.3

A NONLINEAR ODE CONTROL MODEL WITH CONTROL INPUT % AND CONTROLLED
OUTPUT y IS DEFINED BY EQUATIONS

il = X9 + $§,
ty = (1—2x3)u+asin(zy) — o + x5 — 73,
:t3 = u

Yy = a,

WHERE a IS A REAL PARAMETER.

(a)

OUTPUT FEEDBACK LINEARIZE THE SYSTEM OVER A LARGEST SUBSET XO OF
R3

For the new state vector z = [21;29; 23] let 2y = y = x;. Since dz;/dt does not
depend on u, let zo = dz /dt = x9 + :1:% Since

2y = u + asin(z) — 29 + 3 — T3,

the relative degree of y equals two at all points € R?, and the modified conrol
should be defined by

=u+ asin(z,) — xy + 13 — 22,

To define z3, search for a scalar function of 1, x5, x3 for which the gradient is not
parallel to [1 0 0] and is orthogonal to vector [0; 1 — 2z3; 1]. One such function is

2
Z3 = T9 — X3 + I3.

The system equations in terms of z1, 29, 23, v are linear:

Q1 = 22,
ZIQ = v,
Z3 = asin(z) — z3.

DESIGN A (DYNAMICAL) FEEDBACK CONTROLLER WITH INPUTS x(t),7(t), WHERE
r = r(t) IS THE REFERENCE INPUT, SUCH THAT FOR EVERY BOUNDED r = ()
THE SYSTEM STATE z(t) STAYS BOUNDED AS t — 00, AND y(t) — r(t) AS t — 00
WHENEVER 7 = r(t) IS CONSTANT.

One such controller is given by

u=—ky(x1 — 1) — ka(xe + 23) — asin(z) + v9 — 3 + 3,



where k, and k4 are arbitrary positive constants, which is equivalent to
v=—ky(z1 — 1) — kazo.

Since the corresponding equations for zq, z5 are those of a stable LTI system, 21, 25
remain bounded whenever r is bounded, and z; — r when r is constant. Since
dzz/dt + z3 = asin(z;) is also bounded, z3 remains bounded as well. Since the
transformation from z back to x, given by

2
I = 21, $2=Z2—(2’2—2’3) y T3 = 22 — 23,
is continuous, x is also bounded whenever r is bounded.

FIND ALL VALUES OF a € R FOR WHICH THE OPEN LOOP SYSTEM IS FULL STATE
FEEDBACK LINEARIZABLE.

It is convenient to check the full state feedback linearizability conditions in n terms
of the z state variable. Then

1 Z9 ) 0 1 0
il = 0 = 0o 0 o0 |,
23 asin(zy) — z3 acos(z;) 0 —1
and hence
1 0
fgl=10 1, [flfdl= 0
0 acos(zy)

This means that the system is locally full state feedback linearizable (to a controllable
system) whenever acos(z;) # 0. For a = 0 the system is an uncontrollable LTI
system. For a # 0 and z; # 0 the new coordinates

p1 =23, p2=asin(z;) — 23, p3 = acos(z;)zy —asin(zy) + z3
and the new control variable
w = acos(z)v — asin(z)zs — acos(z1)z + asin(z) — 23
linearize completely system equations.

TRY TO DESIGN A DYNAMICAL FEEDBACK CONTROLLER WITH INPUTS y(t),r(t)
WHICH ACHIEVES THE OBJECTIVES FROM (B). TEST YOUR DESIGN BY A COM-
PUTER SIMULATION.

Since all nonlinear elements of the z equations are functions of the observable vari-
able y = 2z, it is easy to construct a stable observer for the system:

o= Aty - &),
7y = u+asin(y) — 23 + ka(y — 21),

~

z3 = asin(y) — Z3,



where k1, ko are arbitrary positive coefficients. With this observer, the control action

can be defined by

u = —kp(21 — ’I") — k?d22 — asin(él) + 2?3.



