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Problem Set 5 Solutions1 

Problem 5.1 

y(t) ≥ a is an equilibrium solution of the differential equation 

y(3)(t) + ÿ(t) + ẏ(t) + 2 sin(y(t)) = 2 sin(a), 

where a → R and y(3) denotes the third derivative of y. For which values 
of a → R is this equilibrium locally exponentially stable? 

The linearized equations for small �(t) = y(t) − a are given by 

�(3)(t) + �̈(t) + �̇(t) + 2 cos(a)�(t) = 0. 

The linearized system is asymptotically stable if and only if 0 < cos(a) < 0.5. Hence the 
equilibrium y(t) ≥ a of the original system is locally exponentially stable if and only if 
0 < cos(a) < 0.5. 

Problem 5.2 

In order to solve a quadratic matrix equation X 2 + AX + B = 0, where 
A, B are given n-by-n matrices and X is an n-by-n matrix to be found, it is 
proposed to use an iterative scheme 

Xk+1 = Xk 
2 + AXk + Xk + B. 

Assume that matrix X� satisfies X 2 + AX� + B = 0. What should be required 
of the eigenvalues of X� and A + X� in order to guarantee that Xk � X� 
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exponentially as k � ≈ when ≡X0 −X�≡ is small enough? You are allowed 
to use the fact that matrix equation 

ay + yb = 0, 

where a, b, y are n-by-n matrices, has a non-zero solution y if and only if 
det(sI − a) = det(sI + b) for some s → C. 

The task at hand is to verify whether the equilibrium X = X� of the map 

X ∈� F (X) = X2 + AX + X + B 

is locally exponentially stable. Since 

F (X + �) = (X + �)2 + A(X + �) + X + � + B = F (X) + (X + A)� + �(X + I) + �2 , 

the differential dF of F at X� is the linear transformation on the set of n-by-n matrices 
defined by 

dF (�) = (X� + A)� + (X� + I)�. 

According to the standard theorem on analysis via linearization, the equilibrium is locally 
exponentially stable if and only if dF has no eigenvalues z with |z| � 1. Equivalently, the 
equation dF (�) = z� should have no non-zero solutions � for all |z| � 1. According to 
the criterion mentioned in the problem formulation, this is true if and only if the sum of an 
eigenvalue of X� + A and an eigenvalue of X� + I − z is not zero for |z| � 0. Equivalently, 
all pairwise sums of eigenvalues of X� + A with eigenvalues of X� should lie withing the 
open disc of radius one centered at −1. 

Problem 5.3 

Use the Center manifold theory to prove local asymptotic stability of 
the equilibrium at the origin of the Lorentz system 

�	 ẋ = −�x + yz, 
ẏ = −πy + πz, 
ż = −yx + βy − z, 

where �, π are positive parameters and β = 1. Estimate the rate of con­

vergence of x(t), y(t), z(t) to zero. 
Linearization of the Lorentz system equations around zero yields 

�	 ẋ = −�x, 
ẏ = −πy + πz, 
ż = βy − z. 
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To diagonalize the linearized system, introduce the new state variables 

x1 = x, x2 = y − z, x3 = y + πz. 

This transforms the original nonlinear equations into 

(x3 + πx2)(x3 − x2) 
ẋ1 = −�x1 + 

(π + 1)2 
, 

(x3 + πx2)x1 
ẋ2 = −(π + 1)x2 + ,

π + 1 
π(x3 + πx2)x1 

ẋ3 = − . 
π + 1 

According to the basic theorem, the central manifold of this system is defined by x1 = 
h1(x3) and x2 = h2(x3), where h1, h2 are 100 times continuously differentiable and satisfy 

2 2 2h1(x3) = h11x3 + o(x3), ḣ1(x3) = 2h11x3 + o(x3), h2(x3) = o(x3), 

together with 

−ḣ1(x3) 
π(x3 + πh2(x3))x3 (x3 + πh2(x3))(x3 − h2(x3)) 

= −�h1(x3) + . 
π + 1 (π + 1)2 

Comparing the second order terms on both sides yields 

1 
h11 = . 

�(π + 1)2 

Substituting this into the third system equation yields 

π 3 3 ẋ3 = − x3 + o(x3),�(π + 1)3 

which means that the center manifold system dynamics is asymptotically stable. Hence 
the equilibrium at the origin is locally asymptotically stable. 

Problem 5.4 

Check local asymptotic stability of the periodic trajectory y(t) = sin(t) 
of system 

ÿ(t) + ẏ(t) + y 3 = − sin(t) + cos(t) + sin3(t). 

The linearized system equations for small �(t) = y(t) − sin(t) are given by


¨
�(t) + �̇(t) + 3 sin2(t)�(t) = 0, 
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or, equivalently 
⎧ ⎨ 

ẋ(t) = A(t)x(t), A(t) = 
0 

−3 sin2(t) 
1 
−1 

, 

where 
⎧ ⎨ 

x(t) = 
�(t) 
�̇(t) 

. 

The evolution matrix of the linear system over its period �, calculated numerically using 
the MATLAB code2 

M=eye(2); 
T=pi; 
for k=1:n, 

M=expm([0 1;-3*sin(k*T/n) -1]*(T/n))*M; 
end 

is given by 
⎧ ⎨ 
−0.2995 −0.2362 

M � 
0.0986 −0.0665 

, 

and has eigenvalues well within the unit circle. Hence, the periodic solution is locally 
exponentially stable. 

Problem 5.5 

Find all values of parameter a → R such that every solution x : [0,≈) ∈� R2 

of the ODE 
⎧ ⎨ 

cos(2t) a 
ẋ(t) = δ 

cos4(t) sin4(t) 
x(t) 

converges to zero as t � ≈ when δ > 0 is a sufficiently small constant. 
Since the integral of trace of 

⎧ ⎨ 
cos(2t) a 

A(t) = 
cos4(t) sin4(t) 

over its period � is positive, there are no a → R, δ > 0 for which all solutions converge to 
zero as t � +≈. 

A more interesting case takes place when A(t) is replaced with 
⎧ ⎨ 

cos(2t) a 
A1(t) = 

cos4(t) − sin4(t) 
. 

2See the attached file hw5 4 624 2003.m 
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Then the average of A1(t) over the period equals 
⎧ ⎨ 

¯ 0 a 
A = . 

3/8 −3/8 

When a < 0, this is a Hurwitz matrix, which, according to the averaging theorem, guaran­
tees asymptotic stability for sufficiently small δ > 0. When a = 0, the original equations 
yield 

ẋ1(t) = cos(2t)x1(t), 

¯and hence x1(t) does not converge to zero as t � ≈ when x1(0) ∞= 0. When a > 0, A has 
eigenvalues with positive real part. Repeating the arguments from the proof of Theorem 
10.2 shows that the evolution matrix of the system will have eigenvalues outside of the 
closed unit disc for all sufficiently small δ > 0. 


