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Problem 3.1

FIND OUT WHICH OF THE FUNCTIONS V : R? — R,
(a) V(zy,20) = 23 + 22;
(b) V(z1,22) = [21] + |22];
(¢) V(z1,x9) = max ||, |z2l;

ARE VALID LYAPUNOV FUNCTIONS FOR THE SYSTEMS

(1) @1 = —x1 + (21 + 22)°, &2 = —22 — (21 + 22)%;
(2) .jl'l = —T9 — 1'1(.%% + l'%), St'g = —X1 — 1'2(37% + SL’%),
(3) Zi'l = J]Q|I1|, i’g = —$1|ZE2|.

The answer is: (b) is a Lyapunov function for system (3) - and no other valid pairs
System/Lyapunov function in the list. Please note that, when we say that a Lyapunov
function V' is defined on a set U, then we expect that V' (z(t)) should non-increase along
all system trajectories in U. In the formulation of Problem 3.1, V' is said to be defined on
the whole phase space R?. Therefore, V(x(t)) must be non-increasing along all system
trajectories, in order for V' to be a valid Lyapunov function.

To show that (b) is a valid Lyapunov function for (3), note first that system (3) is
defined by an ODE with a Lipschitz right side, and hence has the uniqueness of solutions
property. Now, every point (x1,25) € R? with #; = 0 or 25 = 0 is an equilibrium of
(3). Hence V is automatically valid at those points. At every other point in R? V is
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differentiable, with dV/dz = [sgn(z1);sgn(z2)] being the derivative. Hence VV (z) f(z) =
r1Te — 179 = 0 at every such point, which proves that V(z(t)) is non-increasing (and
non-decreasing either) along all non-equilibrium trajectories.

Below we list the “reasons” why no other pair yields a valid Lyapunov function. Of
course, there are many other ways to show that.

For system (1) at x = (2,0), we have @; > 0, &5 < 0, hence both |z;| and |z3| are
increasing along system trajectories in a neigborhood of x = (2,0). Since all Lyapunov
function candidates (a)-(c) increase when both |z1| and |zo| increase, (a)-(c) are not valid
Lyapunov functions for system (1).

For system (2) at x = (0.5, —0.5), we have #; > 0, @2 < 0, hence both |z;| and |zs|
increase along system trajectories in a neighorhood of x = (0.5, —0.5).

For system (3) at x = (2,1), we have & = (2, —2), hence both z? + 3 and max(z;, x5)
are increasing along system trajectories in a neigborhood of z = (2, 1).

Problem 3.2

Show that the following statement is not true. Formulate and prove a correct version: if
V: R" — R s a continuously differentiable functional and a : R" — R" is a continuous
function such that

VV(z)a(z) <0 Vz: V(z)=1, (3.1)
then V(z(t)) < 1 for every solution x : [0,00) — R" of

(1) = a(x(t)) (3.2)

with V(z(0)) < 1.

There are two important reasons why the statement is not true: first, VV'(z) should be
non-zero for all & such that V(z) = 1; second, solution of & = a(z) with initial condition
z(0) = Zo such that V(Zy) = 1 should be unique. Simple counterexamples based on these
considerations are given by

V(z)=2+1, a(z) =1, z(t) =t,

and
V(z) =241, a(Z) = 1.52'3, x(t) = t*.

One correct way to fix the problem is by requiring a strict inequality in (3.1). Here is
a less obvious correction.

Theorem 3.1 Let V : R" — R be a continuously differentiable functional such that
VV (z) # 0 for all T satisfying V(z) =1, and let a : R™ — R" be a locally Lipschitz func-
tion such that condition (3.1) holds. Then V (x(t)) < 1 for every solution x : [ty,t) — R"
of (3.2) with V(x(0)) < 1.



Proof It is sufficient to prove that for every z, € R" satisfying the condition V(zo) = 1
there exists d > 0 such that V(z(t)) <1 for 0 <t < d for the solution z(t) of (3.2) with
z(0) = Zy. Indeed, for € € (0,1) define z¢ as a solution of equation

#(t) = —eVV (2(t)) + alz(t)), =(0) = To. (3.3)

By the existence theorem, solutions x¢ are defined on a non-empty interval ¢ € [0, d] which
does not depend on €. Note that

dV (z°(t))/dt = VV (2(t)) (=eVV (2°(t)) + a(z"(1))) < =€l VV (2°(1))]* < 0

whenever V' (z¢(¢)) = 1, and hence the same inequality holds whenever z¢() is close enough
to the set {x : V(x) = 1}. Hence V(z(t)) < 1 for ¢t € [0,d] for all e. Now, continuous
dependence on parameters implies that x¢(t) converges for all ¢ € [0,d] to z(¢). Hence

V(z(t)) =lim V(z(¢t)) < 1.

e—0

Problem 3.3

THE OPTIMAL MINIMAL-TIME CONTROLLER FOR THE DOUBLE INTEGRATOR SYSTEM
WITH BOUNDED CONTROL

HAS THE FORM
u(t) = —sgn(zy(t) + 0.5m5(¢)*sgn(wo(t))).

(a) FIND A LyAPUNOV FUNCTION V : R? — R? FOR THE CLOSED LOOP SYSTEM,
SUCH THAT V/(z(t)) IS STRICTLY DECREASING ALONG ALL SOLUTIONS OF SYSTEM
EQUATIONS EXCEPT THE EQUILIBRIUM SOLUTION z(t) = 0.

wo»

The original problem set contained a typo: a sign in the expression for u(t) was
missing. For completeness, a solution which applies to this case is supplied in the
next section.

A hint was given in the problem formulation, stressing that u is a minimal time
control. What is important here is that it takes only finite time for for a system
solution to reach the origin. Therefore, the amount of time it takes for the system to
reach the origin can be used as a Lyapunov function. Let us verify this by inspection.
System equations are Lipschitz continuous outside the curve

Qo ={z = [z1;29] : 21 = —0.5x2|22|},



Solving them explicitly (outside ) yields

c1 + cot — 0.5¢2

ot } for z(t) € Qp = {x = [x1;22] : 1 > —0.5m5]22|},
, —

)= |

2
x(t) = [ ‘1 +Zt++t0'5t } for x(t) € Q= {z = [z1;29] 1 1 < —0.522[25[}.

In addition, no solutions with initial condition z(0) = [—0.5r%; 7] or z(0) = [0.5r%; —r],
where r > 0, exists, unless the sgn(-) function is understood as the set-valued sign
{1, v>0
Sgn(y) - [_17 1]7 Yy = 07
{_1}7 y < 07

in which case the corresponding soltion trajectories lie in €2y. Finally, there is an
equilibrium solution z(t) = 0.

The corresponding Lyapunov function (time it take to reach the origin) is now easy
to calculate, and is given by

V(gp) ] T2 + Qma for zy + $2|CL’2‘/2 >0,
—&T2 + 2\/%7 for T+ $2|ZE2‘/2 < 0.

As expected, dV/dt = —1 along system trajectories, and = 0 is the only global
minimum of V.

FIND OUT WHETHER THE EQUILIBRIUM REMAINS ASYMPTOTICALLY STABLE WHEN
THE SAME CONTROLLER IS USED FOR THE PERTURBED SYSTEM

i (t) = wa(t),
{ To(t) = —exy(t) + ult), u(®)] < 1,

WHERE € > ( IS SMALL.
The Lyapunov function V' (z) designed for the case e = 0 is not monotonically non-
increasing along trajectories of the perturbed system (e > 0). Indeed, when

r1 = —0.5r% 4+ 7“8, To =1 >0,

we have
T1T2

V0.522 + a1

V(x(t) = —ex; — 1 —

which is positive when r > 0 is small enough.



However, the stability can be established for the case e > 0 using an alternative
Lyapunov function. One such function is

Vi) = € :EQ + (1 —I—e4|x1|) for |z,| > x3/2,
BT 2l + (1 + €423/2)?, for |oy| < 23/2.

By considering the two regions |z;| > 22/2 and |z1| < 23/2 separately, it is easy to
see that dVi(x(t))/dt <0, and dV;(x(t))/dt = 0 only for

w(t) € N = {[xy;20] : 21| > 23/2}.

Note that the origin is the only global minimum of V;. Also, V; is continuous and
all level sets of V] are bounded. Hence, if a solution of the system equations does
not converge to the origin as t — oo, it must have a limit point z, # 0 such that,
for the solution x,(t) of the system equations with z,(0) = z,,

V(ze(t)) = V(Zs) > min V(z) Vt>0.
zeR?
This implies that z,(t) € N for all t > 0. However, no solution except the equilib-

rium can remain forever in N. Hence the equilibrium x = 0 is globally asymptoti-
cally stable.

Using the fact that a non-equilibrium solution of system equations cannot stay for-
ever in the region where V(z(t)) = 0, in order to prove stability of the equilibrium
as demonstrated above, is referred to as the La Salle’s invariance principle. Essen-
tially, the formulation and a proof of this popular general result are contained in
the solution above.

Problem 3.3 with typo

THE OPTIMAL MINIMAL-TIME CONTROLLER FOR THE DOUBLE INTEGRATOR SYSTEM
WITH BOUNDED CONTROL

HAS THE FORM
u(t) = sgn(z1(t) + 0.525(¢)*sgn(z2(t))).

(a) FIND A LYAPUNOV FUNCTION V : R? +— R? FOR THE CLOSED LOOP SYSTEM,
SUCH THAT V' (z(t)) 1S STRICTLY DECREASING ALONG ALL SOLUTIONS OF SYSTEM
EQUATIONS EXCEPT THE EQUILIBRIUM SOLUTION z(t) = 0.



The system is unstable (all solutions except z(¢) = 0 converge to infinity). However,
this does not affect existence of strictly decreasing Lyapunov functions. For example,

—Zo, X1+ 055(72|!L‘2| > 0,
—T9, I1 + 05.%’2|!L’2| = O, i) Z 0,
To,  x1 + 0.5x9|2s| <0,
To,  x1+ 0.5x9|xe| =0, 22 <O0.

V([z1;22]) =

To show that V is valid, note that the trajectories of this system are given by

C1 —|— Cgt ‘I’ 05t2
2(t) = o+t

when z1 + 0.5z5|x2| > 0 or 1 4+ 0.525|xe] = 0 and x5 > 0, and by

_ 2
Q?(Zf)z |:Cl+02t 0.5t :|

Co —t
when z1 + 0.52z5|x2| < 0 or 21 4+ 0.525|xe] = 0 and x5 < 0.

FIND OUT WHETHER THE EQUILIBRIUM REMAINS ASYMPTOTICALLY STABLE WHEN
THE SAME CONTROLLER IS USED FOR THE PERTURBED SYSTEM

j71<t) = xz(t),
{ To(t) = —exy(t) + u(t), lu(t)| <1,

WHERE € > 0 IS SMALL.

As can be expected, the equilibrium of the perturbed system is unstable just as the
equilibrium of the unperturbed one is. To show this, note that for

xe K ={[x1;22] 1 x1 €(0,1/(2€)), xo >0}

we have #; > 0 and @5 > 0.5. Hence, a solution x = z(t) such that z(0) € K cannot
satisfy the inequality |z(t)| < 1/(2e) for all ¢t > 0.



