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Problem 2.1

CONSIDER THE FEEDBACK SYSTEM WITH EXTERNAL INPUT 7 = 7(f), A CAUSAL LINEAR
TIME INVARIANT FORWARD LOOP SYSTEM GG WITH INPUT u = u(t), OUTPUT v = v(t),
AND IMPULSE RESPONSE ¢(t) = 0.10(t) + (t+a)~*/?e~!, WHERE @ > 0 IS A PARAMETER,
AND A MEMORYLESS NONLINEAR FEEDBACK LOOP u(t) = r(t)+¢(v(t)), WHERE ¢(y) =
sin(y). IT IS CUSTOMARY TO REQUIRE well-posedness OF SUCH FEEDBACK MODELS,
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Figure 2.1: Feedback setup for Problem 2.1

WHICH WILL USUALLY MEAN EXISTENCE AND UNIQUENESS OF SOLUTIONS v = u(t),
u = u(t) OF SYSTEM EQUATIONS

u(t) = 0.1u(t) + /0 h(t — mu(r)dr, u(t) =r(t) + ¢(v(t))

ON THE TIME INTERVAL t € [0,00) FOR EVERY BOUNDED INPUT SIGNAL 7 = r(t).
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(a) SHOW HOW THEOREM 3.1 FROM THE LECTURE NOTES CAN BE USED TO PROVE
WELL-POSEDNESS IN THE CASE WHEN @ > 0.

In terms of the new signal variable

y(t) =v(t) — 0.1¢(v(t)) — 0.1r(t)

system equations can be re-written as

y(t) = /0 h(t — 7)r(r) + 0(y(7) + 0.1 (r))]dr,

where ( 1720
o (t+a)M2%et, t>0
ht) = { 0, otherwise,
and # : R +— R is the function which maps z € R into ¢(q), with ¢ being the
solution of

q—0.1¢(q) = =

Since ¢ is continuously differentiable, and its derivative ranges in [—1,1], € is con-
tinuously differentiable as well, and its derivative ranges between 1/1.1 and 1/0.9.

For every constant 7' € [0, 00), the equation for y(t) with ¢ > T can be re-written
as .
) =9(1)+ [ ary(r).mt)dr
T

where
ar(y,7,t) = h(t — 7)[r(7) + 0(y(7) + 0.1r(7))] + hr(t),

hr(t) = /0 h(t —1)[r(7) + 0(y(7) + 0.1r(7))]dT.

When parameter a takes a positive value, function a = ar satisfies conditions of
Theorem 3.1 with X = R", g = y(T), r =1, and to = T, with K = K(a) being a
function of a # 0, and

M = My = Mo(a)(1 + nax ly(8)])-

Hence a solution y = y(-) defined on an interval ¢ € [0,7] can be extended in a
unique way to the interval ¢ € [0, 7], where

T, — T = min{1/Myp,1/(2K)},

and
max |y(t)] < M(T) — T) + max [y(t)]).

te[0,T4] t€[0,T



Starting with T'=T'(0) = 0, for £k = 0,1,2,... define T'(k + 1) as the T, calculated
for T' = T'(k). To finish the proof of well posedness, we have to show that T'(k) — oo
as k — oo. Indeed, since

Mz (T(k + 1) = T(k)) = Mz min{1/Mru),1/(2K)} <1,

M) grows not faster than linearly with k. Hence T'(k 4+ 1) — T'(k) decrease not
faster than c¢/k, and therefore T'(k) — oo as k — oc.

(b) PROPOSE A GENERALIZATION OF THEOREM 3.1 WHICH CAN BE APPLIED WHEN
a =0 AS WELL.

An appropriate generalization, relying on integral time-varying bounds for a and its
increments, rather than their maximal values, is suggested at the end of proof of
Theorem 3.1 in the lecture notes.

Problem 2.2

READ THE SECTION OF LECTURE 4 HANDOUTS ON LIMIT SETS OF TRAJECTORIES OF
ODE (IT WAS not COVERED IN THE CLASSROOM).

(a) GIVE AN EXAMPLE OF A CONTINUOUSLY DIFFERENTIABLE FUNCTION a : R?
R?, AND A SOLUTION OF ODE

#(t) = alx(1)), (2.1)
FOR WHICH THE LIMIT SET CONSISTS OF A SINGLE TRAJECTORY OF A NON-

PERIODIC AND NON-EQUILIBRIUM SOLUTION OF (2.1).

The limit trajectory should be that of a maximal solution z : (t;,t5) — R? such
that |z(t)| — oo as t — t; or t — to.

To construct a system with such limit trajectory, start with a planar ODE for which
every solution, except the equilibrium solution at the origin, converges to a periodic
solution which trajectory is the unit circle. Considering R? as the set of all complex
numbers, one such ODE can be written as

() = (L= [z())] + 7)[2(1)[2(), where j = v/—1,
where every solution with z(0) # 0 converges to the trajectory of periodic solution
20(t) = e’*. Now apply the substitution

1
z=—+1,
w

which moves the point z = 1 to w = oo (and also moves z = 0o to w = 0). For the
resulting system

w(t) = —wt) (1 +w(®))(1+Jj = |1+ w?)/w@) )1+ w?)/w@)l,  (2.2)



every solution w(-) with w(0) # 0 will have the straight line passing through the
points w = —1/2 and w = 1/(j — 1) (trajectory of the solution wq(t) = 1/(e’t — 1),
defined for t € (0,2m)), as its limit set. However, the right side of (2.2) is not a
continuously differentiable function of w: there is a discontinuity at w = 0. To fix
this problem, multiply the right side by the real number |w(¢)|*, which yields

a(w) = —w(l +w)((1+ j)lw* = (1 +w)w|)|[(1 +w)w.

For the resulting system, every trajectory except the equilibrium at w = 0 has the
same limit set as defined before.

GIVE AN EXAMPLE OF A CONTINUOUSLY DIFFERENTIABLE FUNCTION a: R" —
R", AND A bounded SOLUTION OF ODE (2.1), FOR WHICH THE LIMIT SET CON-
TAINS NO EQUILIBRIA AND NO TRAJECTORIES OF PERIODIC SOLUTIONS.

It is possible to do this with a 4th order linear time-invariant system with purely
imaginary poles:

() = x2(b),
Do(t) = —zi(t),
t3(t) = may(t),
l’4(t) = —7T1’3(t).
The solution
sin(?)
| cos(t)
() = sin(7rt)
cos(t)
of this ODE has the limit set
sin(t)
B cos(ty)
Q= Sin(tg) t1,to eR
cos(tz)

Indeed, since 7 is not a rational number, every real number can be approximated
arbitrarily well by 27k — 2q where k, g are arbitrarily large positive integers. Hence
the difference between t; 4+ 2wk and t5 /7 + 2¢ can be made arbitrarily small for every
given pair t1,t5 € R. For t = t; + 27k this implies that

sin(t) = sin(ty), cos(t) = cos(t1), sin(nt) ~ sin(ta+2mq) = sin(ty), cos(wt) = cos(ts).



Every solution with x(0) in €2 has the form

sin(t —+ tl)
| cos(t+1t)

o(t) = sin(wt +t5) |’
cos(mt + t3)

and hence is not periodic.

An example with n = 3 is also possible. However, such example would require more
work, since it cannot be given by a linear system.

(¢) USE THEOREM 4.3 FROM THE LECTURE NOTES TO DERIVE THE POINCARE-
BENDIXON THEOREM: if a set X C R? is compact (i.e. closed and bounded),
positively invariant for system (2.1) (i.e. x(t,z) € X for allt >0 and z € X ), and
contains no equilibria, then the limit set of every solution starting in X is a closed
orbit (i.e. the trajectory of a periodic solution). ASSUME THAT a : R? +— R” 18
CONTINUOUSLY DIFFERENTIABLE.

Let zo : (t1,t2) — R? be a maximal solution of (2.1) such that ¢; < 0 < t, and
z(0) € X. Then, by the invariance of X, z(¢t) € X for all t > 0. Hence z(¢) is
bounded for t > 0, and hence t5 = co. Appllying Theorem 4.3 to x, note first that
scenario (a) cannot take place (since x(t) is bounded for ¢ > 0). On the other hand,
scenario (c) also cannot take place. Indeed, otherwise let x; : (¢1,t)) — R? be a
maximal solution of (2.1) such that () is a limit point of x¢(-) for all ¢ € (¢}, ).
Since X is closed and x¢(t) € X for ¢t > 0, all limit points of xy lie in X. Hence
x1(t) isin X, and t} = co. According to scenario (c), the limit

T = tlim x1(t)

exists, which implies a(z) = 0, contradicting the assumptions. Hence only scenario
(b) takes place, which is what we had to prove.

Problem 2.3

USE THE INDEX THEORY TO PROVE THE FOLLOWING STATEMENTS.

(a) IF n > 1 1S EVEN AND F': S™ +— S™ IS CONTINUOUS THEN THERE EXISTS x € S"
SUCH THAT z = F(z) OR x = —F(z).
Assume, to the contrary, that = # F(x) and —z # F(z) for all x € S™. Then

(2t — Dz +t(1 —t)F(x)

|(2t — Do +t(1 —t)F(x)]

is a continuous homotopy between H(x,0) = —z and H(x,1) = x. Since index

of the map = — —ux equals (—1)""!, and index of the map = +— x equals 1, a
contradiction results.

H(z,t) =



(b) THE EQUATIONS FOR THE HARMONICALLY FORCED NONLINEAR OSCILLATOR
§(t) +9(t) + (1 +y(t)*)y(t) = 100 cos(t)
HAVE AT LEAST ONE 27-PERIODIC SOLUTION. Hint: SHOW FIRST THAT, FOR

V(t) = 5(t)* +y(t)* +y()i(t) + 0.5y(t)",
THE INEQUALITY )
V(t) < —C1V<t) + o,
WHERE (1, C2 ARE SOME POSITIVE CONSTANTS, HOLDS FOR ALL t.
Differentiating V' (¢) along a system solution y = y(¢) yields, for w(t) = 100 cos(t),
Vo= = —yi— 9~y 2 +y/2w

= —0.5V —0.5(y +y/2)* + 2y +y/2)w — 3/8y>

= —0.5V +2w® — 0.5(y +y/2 + 2w)* — 3/8y*

< —0.5V 4+ 20000.

Hence the derivative of
r(t) = ™™ (V (t) — 40000)

is non-positive at all times, i.e. 7 = r(¢) is monotonically non-increasing.

Consider the function Gy : R? — R? which maps the vector of initial conditions
z(0) = [y(0);y(0)] to the vector z(T") = [y(T); y(T)], where T' = 27k and k > 0 is
an integer parameter to be chosen later. By continuity of dependence of solutions
of ODE on parameters, GGy is continuous. Also, since

V(t) < 3lz()* +05lx(t)* < |=()]* +5,
it follows that
%1 (V(T) — 40000) < V(0) — 40000 < |z(0)[*,

which implies
V(T) < 40000 + e~ ™|x(0)|*.

Since V (t) > 0.5|x(t)|?, it follows that
l2(T)| < 80000 + 2e~™(|2(0)|* — 39995).

Hence, if |z(0)] < 300 and

k ~ 4.55

- log(2) + 4 1log(30)

™



then |z(7)| < 300.
Now consider the function G : B? — B?, where B? is the unit ball in R?, defined
by
G(z) = Gy(300z)/300.
The function satisfies the conditions of the Brower’s fixed point theorem, and hence

there exists # € B? such that G(z) = z. By the definition of G, the solution of the
nonlinear oscillator equations with

will be periodic with period T = 107.



