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Problem 5.1

y(t) = a is an equilibrium solution of the differential equation
y () +§(t) + y(t) + 2sin(y(t)) = 2sin(a),

where a € R and y® denotes the third derivative of 3. For which values of a € R is this
equilibrium locally exponentially stable?

Problem 5.2

In order to solve a quadratic matrix equation X2 + AX + B = 0, where A, B are given
n-by-n matrices and X is an n-by-n matrix to be found, it is proposed to use an iterative
scheme

X1 = X7+ AXy + Xy + B.

Assume that matrix X, satisfies X2 + AX, + B = 0. What should be required of the
eigenvalues of X, and A+ X, in order to guarantee that X, — X, exponentially as k — oo
when || Xy — X, || is small enough? You are allowed to use the fact that matrix equation

ay + yb =0,

where a, b,y are n-by-n matrices, has a non-zero solution y if and only if det(s/ — a) =
det(sI + b) for some s € C.
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Problem 5.3

Use the Center manifold theory to prove local asymptotic stability of the equilibrium at
the origin of the Lorentz system

y:_0y+027
2= —yr+py — 2,

where (3,0 are positive parameters and p = 1. KEstimate the rate of convergence of
x(t),y(t), z(t) to zero.

Problem 5.4

Check local asymptotic stability of the periodic trajectory y(t) = sin(¢) of system
§i(t) + y(t) + y* = —sin(t) + cos(t) + sin®(t).

Problem 5.5

Find all values of parameter a € R such that every solution x : [0, 00) + R? of the ODE
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converges to zero as t — oo when € > 0 is a sufficiently small constant.



