Massachusetts Institute of Technology

Department of Electrical Engineering and Computer Science 6.243j (Fall 2003): DYNAMICS OF NONLINEAR SYSTEMS

by A. Megretski

Problem Set 4¹

Problem 4.1

Find a function $V: \mathbb{R}^3 \mapsto \mathbb{R}_+$ which has a unique minimum at $\bar{x} = 0$, and is strictly monotonically decreasing along all non-equilibrium trajectories of system

$$\dot{x}_1(t) = -x_1(t) + x_2(t)^2,
\dot{x}_2(t) = -x_2(t)^3 + x_3(t)^4,
\dot{x}_3(t) = -x_3(t)^5.$$

Problem 4.2

System Δ takes arbitrary continuous input signals $v:[0,\infty) \mapsto \mathbf{R}$ and produces continuous outputs $w:[0,\infty) \mapsto \mathbf{R}$ in such a way that the series connection of Δ and the LTI system with transfer function $G_0(s) = 1/(s+1)$, described by equations

$$\dot{x}_0(t) = -x_0(t) + w(t), \quad w(\cdot) = \Delta(v(\cdot)),$$

has a non-negative storage function with supply rate

$$\sigma_0(\bar{x}_0, \bar{v}, \bar{w}) = (\bar{w} - 0.9\bar{x}_0)(\bar{v} - \bar{w}).$$

- (a) Find at least one nonlinear system Δ which fits the description.
- (b) Derive constraints to be imposed on the values $G(j\omega)$ of a transfer function

$$G(s) = C(sI - A)^{-1}B$$

¹Posted October 1, 2003. Due date October 8, 2003

with a Hurwitz matrix A, which guarantee that $x(t) \to 0$ as $t \to \infty$ for every solution of

$$\dot{x}(t) = Ax(t) + Bw(t), \ v(t) = Cx(t), \ w(\cdot) = \Delta(v(\cdot)).$$

Make sure that your conditions are satisfied at least for one non-zero transfer function G = G(s).

Problem 4.3

For the pendulum equation

$$\ddot{y}(t) + \dot{y} + \sin(y) = 0,$$

find a single continuously differentiable Lyapunov function $V = V(y, \dot{y})$ that yields the maximal region of attraction of the equilibrium $y = \dot{y} = 0$. (In other words, the level set

$$\{\bar{x} \in \mathbf{R}^2: \ V(\bar{x}) < 1\}$$

schould be a union of disjoint open sets, one of which is the attractor Ω of the zero equilibrium, and $V(y(t), \dot{y}(t))$ schould have negative derivative at all points of Ω except the origin.)