Massachusetts Institute of Technology

Department of Electrical Engineering and Computer Science 6.243j (Fall 2003): DYNAMICS OF NONLINEAR SYSTEMS

by A. Megretski

Problem Set 1¹

Problem 1.1

Behavior set \mathcal{B} of an autonomous system with a scalar binary DT output consists of all DT signals $w = w(t) \in \{0, 1\}$ which change value at most once for $0 \le t < \infty$.

- (a) Give an example of two signals $w_1, w_2 \in \mathcal{B}$ which commute at t = 3, but do not define same state of \mathcal{B} at t = 3.
- (b) Give an example of two different signals $w_1, w_2 \in \mathcal{B}$ which define same state of \mathcal{B} at t = 4.
- (c) Find a time-invariant discrete-time finite state-space "difference inclusion" model for \mathcal{B} , i.e. find a *finite* set X and functions $g: X \mapsto \{0,1\}, f: X \mapsto S(X),$ where S(X) denotes the set of all non-empty subsets of X, such that a sequence $w(0), w(1), w(2), \ldots$ can be obtained by sampling a signal $w \in \mathcal{B}$ if and only if there exists a sequence $x(0), x(1), x(2), \ldots$ of elements from X such that

$$x(t+1) \in f(x(t))$$
 and $w(t) = g(x(t))$ for $t = 0, 1, 2, ...$

(Figuring out which pairs of signals define same state of \mathcal{B} at a given time is one possible way to arrive at a solution.)

Problem 1.2

Consider differential equation

$$\ddot{y}(t) + \operatorname{sgn}(\dot{y}(t) + y(t)) = 0.$$

¹Posted September 10, 2003. Due date September 17, 2003

- (a) Write down an equivalent ODE $\dot{x}(t) = a(x(t))$ for the state vector $x(t) = [y(t); \dot{y}(t)]$.
- (b) Find all vectors $x_0 \in \mathbf{R}^2$ for which the ODE from (a) does not have a solution $x: [t_0, t_1] \mapsto \mathbf{R}^2$ (with $t_1 > t_0$) satisfying initial condition $x(t_0) = x_0$.
- (c) Define a semicontinuous convex set-valued function $\eta: \mathbf{R}^2 \mapsto 2^{\mathbf{R}^2}$ such that $a(\bar{x}) \in \eta(\bar{x})$ for all x. Make sure the sets $\eta(\bar{x})$ are the smallest possible subject to these constraints.
- (d) Find explicitly all solutions of the differential inclusion $\dot{x}(t) \in \eta(x(t))$ satisfying initial conditions $x(0) = x_0$, where x_0 are the vectors found in (b). Such solutions are calles *sliding modes*.
- (e) Repeat (c) for $a: \mathbf{R}^2 \mapsto \mathbf{R}^2$ defined by

$$a([x_1; x_2]) = [\operatorname{sgn}(x_1); \operatorname{sgn}(x_2)].$$

Problem 1.3

For the statements below, state whether they are true or false. For true statements, give a *brief* proof (can refer to lecture notes or books). For false statements, give a counterexample.

- (a) All maximal solutions of ODE $\dot{x}(t) = \exp(-x(t)^2)$ are defined on the whole time axis $\{t\} = \mathbf{R}$.
- (b) All solutions $x: \mathbf{R} \mapsto \mathbf{R}$ of the ODE

$$\dot{x}(t) = \begin{cases} x(t)/t, & t \neq 0, \\ 0, & t = 0 \end{cases}$$

are such that x(t) = -x(-t) for all $t \in \mathbf{R}$.

(c) If constant signal $w(t) \equiv 1$ belongs to a system behavior set \mathcal{B} , but constant signal $w(t) \equiv -1$ does not then the system is not linear.