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Chapter 27 

Poles and Zeros of MIMO Systems
 

27.1 Introduction 

You are familiar with the de�nitions of poles, zeros, and their multiplicities for the scalar transfer 

functions associated with SISO LTI systems. Also recall the interpretation (stated here for the CT 

case, but the analogous statement holds in the DT case) of a pole frequency p0 

as being a \generated 

frequency" of the system, in the sense that an exponential of the form cep0 

t for t � 0 (and for 

some nonzero constant c) is present in the output even when the input for t � 0 comprises a sum of 

exponentials that does not contain a term with this frequency. Similarly, the frequency �0 

of a zero 

may be interpreted as an \absorbed frequency", in the sense that even when the input comprises a 

sum of exponentials that contains a term of the form ce�0 

t for t � 0, the output does not contain a 

component at this frequency. 

For the case of the p�m transfer function matrix H(s) that describes the zero-state input/output 

behavior of an m-input, p-output LTI (CT) system, the de�nitions of poles and zeros are more subtle. 

We would still like them to respectively have the interpretations of generated and absorbed frequencies, 

in some sense, but that still leaves us with many choices. We begin by discussing the case of diagonal 

transfer function matrices. (We continue to use the notation of CT systems in what follows, but the 

DT story is identical.) 

27.2 Poles and Zeros for Diagonal H(s) 

It is clear what we would want our eventual de�nitions of poles and zeros for multi-input, multi-output 

(MIMO) systems to specialize to in the case where H(s) is nonzero only in its diagonal positions, 

because this corresponds to completely decoupled scalar transfer functions. For this diagonal case, we 

would evidently like to say that the poles of H(s) are the poles of the individual diagonal entries of 

H(s), and similarly for the zeros. 

Example 27.1 Given the 3 � 3 transfer matrix � � 

s + 2 s 

H(s) � diagonal � � 0 

(s + 3)2 (s + 2)(s + 3) 



we would say that H(s) has poles at ;3 of multiplicity 2 and 1 respectively, and a pole at 

;2 of multiplicity 1� and that it has zeros at ;2, at 0, and at 1, all with multiplicity 1. 

Note from the above example that in the MIMO case we can have poles and zeros at the same 

frequency (e.g. those at ;2 in the example), without any cancellation! Also note that a pole or zero is 

not necessarily characterized by a single multiplicity� we may instead have a set of multiplicity indices 

(e.g. as needed to describe the pole at ;3 in the above example). The diagonal case makes clear 

that we do not want to de�ne a pole or zero location of H(s) in the general case to be a frequency 

where all entries of H(s) respectively have poles or zeros. The particular H(s) that we have shown in 

the example has a normal rank (i.e. for most values of s) of 2, and this rank drops at precisely the 

locations of the zeros of the individual entries. 

27.3 MIMO Poles 

We might consider de�ning a pole location as follows: 

�	 (Pole Location) H(s) has a pole at a frequency p0 

if some entry of H(s) has a pole at s � p0. 

This choice would still have the signi�cance of a generated frequency, for an appropriately chosen input 

and output. The above de�nition is indeed the one that is picked. The full de�nition also shows us 

how to determine the set of multiplicities associated with each pole frequency. For completeness | 

but not because we expect you to understand the motivation for it, or to remember and use it | we 

state the prescription here: 

�	 (Pole Multiplicities) Determine the largest multiplicity �1(p0) with which the pole p0 

occurs 

among the 1 � 1 minors of H(s), then the largest multiplicity �2(p0) of the pole p0 

among the 

2 � 2 minors of H(s), and so on. Stop at minors of size k � k if k is the �rst size for which 

�k(p0) � �k+1(p0) (this k will actually depend on p0, so we should really write k(p0), but we 

omit the argument in the interest of keeping the notation streamlined), or if all minors of larger 

size vanish. The set of multiplicities associated with the pole at p0 

is now given by the set of 

numbers �1(p0) � �2(p0) ; �1(p0) � � � � � �k(p0) ; �k;1(p0). 

(Caution: For all the computations with minors described above and later in these notes, any common 

factors between the expressions obtained for the numerator and denominator of a minor must �rst be 

cancelled out, of course.) You should verify that you get the expected values for pole multiplicities 

when you apply this de�nition to the preceding example of a diagonal H(s). 

Determining Poles from a State-Space Realization 

Given this de�nition of poles (and their multiplicities) for MIMO transfer functions, what can be 

said about the relation of the poles of H(s) to properties of a realization (A� B� C� D) of this transfer 

function� What is clear is that the poles of 

H(s) � C(sI ; A);1B + D 

must be contained among the eigenvalues of A, because the denominator terms in the entries of 

H(s) are all a(s) � det(sI ; A), apart from possible cancellations between a(s) and the entries of 



C(adj[sI ; A])B. In fact, the poles of H(s) must be contained among the reachable and observable 

eigenvalues of A, as only the reachable and observable part of the realization contributes to the transfer 

function. What can be shown, although this is more than we are equipped to do in this course, is that 

the poles of H(s) are precisely equal | in location and multiplicity | to the reachable and observable 

eigenvalues of A. In fact, the multiplicity indices associated with a pole of H(s) are precisely the sizes 

of the Jordan blocks associated with the corresponding eigenvalue of A. 

You can verify from the preceding facts that: 

�	 the characteristic polynomial of a minimal realization of H(s) | which we may refer to 

as the pole polynomial | equals the least common multiple of the denominators of all possible 

minors (of all sizes) in H(s). 

Example 27.2 Consider the 2 � 2 transfer function � �1 1 

H1(s) � 

s+3 : 

0 

1 

s+3 

Its only polar frequency is at ;3. The largest multiplicity of this pole in the 1 � 1 minors 

is 1, and its largest multiplicity in the 2 � 2 minor (there is only one minor of this size) 

is 2. Hence the multiplicities of the pole at ;3 are 1 and 2 ; 1 � 1. The characteristic
 

polynomial of a minimal realization of H1(s) is (s + 3)2 .
 

Now consider the transfer function
 � �1 1 

H2(s) � 

s+3 s+3 :1 1 

s+3 s+3 

Its only polar frequency is again at ;3. The largest multiplicity of this pole in the 1 � 1 

minors is 1, and its 2 � 2 minor vanishes. Hence the pole at ;3 has a multiplicity of just 

1, and the characteristic polynomial of a minimal realization of H2(s) is simply (s + 3). 

You should verify that the above results are consistent with the minimal realizations 

produced by Gilbert's method. Suppose h	 i 

1 1H3(s) � (s;1)(s+3)2 (s;1)2 (s+3) 

: 

Verify that this transfer matrix has a pole at 1 of multiplicity 2, and a pole at ;3 of 

multiplicity 2. The characteristic polynomial of a minimal realization of H3(s) is thus 

(s ; 1)2(s + 3)2 . 

27.4 MIMO Zeros 

We have already established, with guidance from the diagonal case, that a zero should not be de�ned 

as a frequency where all entries of H(s) have zeros. It is also not satisfying in the general MIMO case 

(although it is correct in the diagonal case) to de�ne a zero location as a frequency where some entry 

of H(s) has a zero. Among the objections to this de�nition are the following: 



(i) although such a frequency can be hidden from a particular output even when it is present in a 

particular input (since it is \absorbed" by the corresponding entry of H(s)), this frequency will 

in general not be hidden from all outputs, and is therefore not really \absorbed" in a MIMO 

sense� 

(ii)	 we will not in general have the desirable feature that the zeros of an invertible H(s) will be poles 

of H;1(s). 

A m	uch more satisfactory de�nition of a zero is the following: 

�	 (Zero Location) H(s) has a zero at a frequency �0 

if it drops rank at s � �0. 

This particular de�nition corresponds to what is termed a transmission zero, and is the only de�nition 

of interest to us in this course. Consider, for example, the case of an H(s) of full column rank (as a 

rational matrix | i.e. there is no rational vector u(s) � 0 such that 6 H(s)u(s) � 0), and assume it 

is �nite at s � �0, i.e. has no poles at �0. Then H(s) drops rank at s � �0 

i� H(�0)u0 

� 0 for some 

u0 

6� 0. 

As we have seen, however, a MIMO transfer function can have poles and zeros at the same 

frequency, so a more general characterization of rank loss is needed to enable us to detect a drop in 

rank even at frequencies where some entries of H(s) have poles. This is provided by the following test, 

which is restricted to the case of full-column-rank H(s), but an obvious transposition will handle the 

case where H(s) has full row rank, and somewhat less obvious extensions will handle the general case: 

�	 (Zero Location | re�ned) A rational matrix H(s) of full column rank has a zero at s � �0 

if 

there is a rational vector u(s) such that u(�0) is �nite and nonzero, and lims!�0 

[H(s)u(s)] � 0. 

Example 27.3 Consider � � 

1 

1 

H(s) � 

s;3 � 

0 1 

It is clear that H(s) has a pole at s � 3, but it may not be immediately obvious that it 

also has a zero at s � 3. Observe that for s approaching 3, the second column of H(s) 

approaches alignment with the �rst column, so the rank of H(s) approaches 1, i.e. there 

is a rank drop at s � 3. To con�rm this, pick � � 

u(s) � 

;1 

s ; 3 

and verify that lims!3 

H(s)u(s) � 0 even though u(3) is (�nite and) nonzero. 

As suggested earlier, one of the nice features of our de�nition of zeros is that, for an 

invertible H(s), they become poles of the inverse. In this example, � � 

H;1(s) � 

1 ; s;
1
3 

0 1 

which evidently has a pole s � 3. 

There is also a prescription for establishing the multiplicities of the zeros, and again we state it 

for completeness, but not with the expectation that you learn to work with it: 



�	 (Zero Multiplicities) Determine the largest multiplicity with which �0 

occurs as a pole among 

the 1 � 1 minors or, if it doesn't appear as a pole, then determine the smallest multiplicity with 

which it occurs as a zero of every 1 � 1 minor� denote this by �1(�0). Continue similarly with 

the 2 � 2 minors, and so on, stopping with minors of size r equal to the rank of H(s) (beyond 

which size all minors vanish). Let ` denote the �rst size for which �`(�0) � �`;1(�0) (this ` 

will actually depend on �0, so we should denote it by `(�0), but we omit the argument to keep 

the notation simple). Then the set of multiplicities associated with the zero at �0 

is given by 

�`;1(�0) ; �`(�0) � �`(�0) ; �`+1(�0) � � � � � �r;1(�0) ; �r(�0). 

Given these de�nitions of the poles and zeros (and their multiplicities) for MIMO transfer func-
tions, it can be shown that for an invertible H(s) the total number of poles (summed over all frequen-
cies, including in�nity, and with multiplicities accounted for) equals the total number of zeros (again 

summed over all frequencies, including in�nity, and with multiplicities accounted for). However, for 

non-invertible square H(s) and for non-square H(s), there will be more poles than zeros | an inter-
esting di�erence from the scalar case. In fact, if the coe�cients of the rationals in H(s) are picked 

\randomly", then a square H(s) will typically (or \generically") be invertible and will have zeros, 

while a non-square H(s) will typically not have zeros. (Of course, the coe�cient values in our idealized 

models of systems are not picked randomly, so the non-generic cases are of interest too.) 

Determining Zeros from a Minimal Realization 

What can be said about the relation of the zeros of H(s) to properties of a minimal realization 

(A� B� C� D) of this transfer function� (The non-minimal parts of a realization do not contribute to the 

transfer matrix, and therefore play no role in determining poles and transmission zeros.) The answer 

is provided by the following nice result (which we shall demonstrate immediately below, but only for 

those zero locations that are not also pole locations, because the general proof requires tools beyond 

those developed here): 

�	 (Finite Zeros from a Minimal State-Space Model) Given a minimal state-space realization 

(A� B� C� D) of H(s), the �nite zeros of H(s), in both location and multiplicity, are the same as 

the �nite zeros of the system matrix � � 

sI ; A ;B
: 

C D 

(The �nite zeros of the system matrix are de�ned as before, namely as the �nite values of s for 

which the matrix drops rank.) 

Thus, the locations of the �nite zeros of H(s) are the values of s for which the system matrix of 

a minimal realization drops rank. Note that the system matrix has no �nite poles to confound our 

determination of which values of s correspond to rank loss. (If the realization is not minimal, then the 

system matrix has additional zeros, corresponding to the unobservable and/or unreachable eigenvalues 

of the realization. These zeros, along with the transmission zeros, comprise what are referred to as the 

invariant zeros of the system.) 

To demonstrate the above result for the special case where pole and zero locations do not coincide, 

we begin with the identity �	 �� � � � 

I 0 sI ; A ;B sI ; A ;B 

;C(sI ; A);1 I C D 

�
0 H(s) 

: (27.1) 

Several facts can be deduced from this identity, including the following: 



�	 If �0 

is not an eigenvalue of A and thus not a pole of H(s), the �rst matrix in the above identity 

is well-de�ned and invertible at s � �0, so the other two matrices in the identity must have the 

same rank at s � �0. Therefore, since �0I ; A is invertible, it follows in this case that H(s) drops 

rank at s � �0 

i� the system matrix drops rank at s � �0. This is the result we were aiming to 

demonstrate. 

�	 The above identity also shows that the rank of H(s) as a rational matrix (where this rank may 

be de�ned as the size of the largest non-vanishing minor of H(s), and is also the rank that H(s) 

has for most values of s) is n less than the rank of the system matrix, where n is the order of 

the realization (A� B� C� D). It follows that H(s) has full column (respectively, row) rank as a 

rational matrix i� the system matrix has full column (row) rank as a rational (or polynomial) 

matrix. 

�	 For square H(s), we can take determinants on both sides of the above identity, and thereby 

conclude that


det (system matrix) � det(sI ; A) det H(s)


Thus, if det H(s) is a non-zero rational, then the zeros of H(s) are precisely the roots of the 

polynomial det(sI ; A) det H(s). For this reason, the product of the pole polynomial of H(s) 

and of det H(s) | in the case where det H(s) 6� 0 | may be referred to as the zero polynomial 

of H(s). 

The problem of �nding the values of s where a matrix of the form sE ; A drops rank, with 

E possibly singular or even non-square, is referred to as a generalized eigenvalue problem, and the 

corresponding values of s are referred to as generalized eigenvalues. The problem of computing the 

transmission zeros of a system using the system matrix of an associated minimal realization is evidently 

of this type. Good numerical routines (e.g. the \qz" algorithm in Matlab) exist for solving the 

generalized eigenvalue problem. 

Exercise Suppose � � 

1 

1 

H(s) � 

s;3 

0 1 

Find a minimal realization of this transfer function, and use the associated system matrix to establish 

that H(s) has a single pole and a single zero at s � 3. 

Zero Directions 

Now let us consider in more detail the particular but important case where H(s), and therefore the 

system matrix of a minimal realization of it, have full column rank as rational matrices. For this case, 

rank loss in the system matrix at s � �0 

corresponds to having � �� � � � � � � � 

�0I ; A ;B x0 �
0 

�
x0 6 0	 

(27.2)� 

C D u0 

0 u0 

0 

The observability of the realization ensures (by the modal observability test) that u0 

6� 0 in the above 

equation, and the assumption that the system matrix | or equivalently H(s) | has full column-rank 

as a rational matrix ensures that x0 

6 The vector x0� 0. in this equation is referred to as the state 

zero direction associated with �0, and u0 

is the input zero direction. The dynamical signi�cance of the 

state and input zero directions is given by the following result: 



6

�	 (Dynamical Interpretation of Zero Location and Zero Directions) Suppose �0 

is a zero 

location of H(s) and x0, u0 

are associated state and input zero directions computed from the 

system matrix of a minimal realization of H(s). Then, with initial condition x(0) � x0 

� 0 

and input u(t) � u0e
�0 

t 6� 0 for t � 0, the state response of the system (A� B� C� D) is x(t) � 

x0e
�0 

t � 0 and the output response is identically 0, i.e. 6 y(t) � 0, for t � 0. 

The proof of the above statement is by simple veri�cation. Thus note that x(t) � x0e
�0 

t and u(t) � 

u0e
�0 

t satisfy the state equation x_ (t) � Ax(t) + Bu(t), in view of the top row of (27.2). Therefore the 

(unique) state trajectory obtained by choosing x0 

as the initial condition x(0) and choosing the input 

as u(t) � u0e
�0 

t is precisely x(t) � x0e
�0 

t . The corresponding output is y(t) � Cx(t) + Du(t), and the 

bottom row of (27.2) shows that this expression evaluates to 0. 

The above result shows that a MIMO zero still has an interpretation as an absorbed frequency. 

The components of the input zero direction vector u0 

specify the proportions in which the exponential 

e�0 

t should be present at the corresponding inputs of the system to ensure | when the initial condition 

is picked to be the state zero direction vector x0 

| that this exponential appears in none of the outputs. 

For the case where �0 

is not a pole of H(s), we can use (27.1) to deduce that H(�0)u0 

� 0 . 

One can similarly develop \duals" of the preceding results to focus on the loss of row rank 

rather than column rank, invoking left zero directions rather than the right zero directions that we 

have introduced above, but we omit the details and summarize the results in Table 27.1. Also, there 

are natural (but notationally cumbersome) generalizations of the above construction to expose the 

dynamical signi�cance of having a zero with multiplicities larger than 1. 

Example 27.4 A transfer function matrix is given by � � s;1 2 

s;2 s+1H(s) � s 0 

: 

s+1 

The reader should be able to verify that there is a pole at ;1 with multiplicity 2, and a 

pole at 2 with multiplicity 1. The normal rank of H(s) is 2. At 1, H(1) has rank 1 

which implies that the system has a zero at 1. This transfer function matrix also loses 

rank at s � 0. The third zero (note that since the transfer function matrix is square there 

is an equal number of poles and zeros) must be at the location of the pole s � 2. To see 

this, we de�ne � � 

u(s) � 

;2(s ; 2) 

: 

(s + 1)(s ; 1)
 

It is clear that u(2) is �nite and
 � � � � 

0 0 

lim H(s)u(s) � lim ;2s(s;2) 

� � 

s!2 s!2	 

0 

s+1 

which con�rms that H(s) has a zero at 2. 

Another way of determining the �nite zeros is to obtain a realization and analyze the 

system's matrix. Using Gilbert's realization, we get 

2 3 2 32 3 2 3 

x1 

2 0 0 x1 

1 0
d 4 x2 

5 � 

4 0 ;1 0 

54 x2 

5 + 

4 1 0 

5 u 

dt x3 

0 0 ;1 x3 

0 1 2 3 � � x1 

� � 

y �	

1 0 2 4 x2 

5 + 

1 0 

u 

0 ;1 0 1 0 

x3 



The system matrix is 32 

s ; 2 0 0 ;1 0 

0 s + 1 0 ;1 0�� 66664


sI ; A ;B 

�

0 0 s + 1 0 ;1 �


C D



 1 0 2 1 0 


 

0 ;1 0 1 0 

and its determinant is �� 

det 

sI ; A ;B 

� 2s(s ; 2)� 

C D 

from which it is clear that the �nite zeros are 0 and 2. 
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H(s) is p � m H(s) is p � m Comments 

full column rank transfer matrix� � 

full row rank transfer matrix� � 

H(s) � 

A 

C 

B 

D 

minimal H(s) � 

A 

C 

B 

D 

minimal 

�0 

is a zero of H(s) if �0 

is a zero of H(s) if characterizes 

rank H(�0) � m rank H(�0) � p zeros that 

Equivalently there exists u0 

Equivalently there exists u0 

are di�erent 

such that H(�0)u0 

� 0 such that u0 

T H(�0) � 0 from poles 

�0 

is a zero of H(s) if �0 

is a zero of H(s) if characterizes 

there exists u(s) such that there exists u(s) such that all zeros 

u(�0) is �nite and u(�0) is �nite and 

lims!�0 

H(s)u(s) � 0 lims!�0 

u(s)T H(s) � 0 

�0 

is a zero of H(s) if �0 

is a zero of H(s) if characterizes � � � � 

rank 

�0I ; A ;B 

� n + m rank 

�0I ; A ;B 

� n + p �nite zeros 

C D C D 

�0 

is a zero of � 

H(s�) if � � 

�0 

is a zero of � 

H(s�) if � � 

characterizes 

x0 

0 x0 

0 

there exists �6 such that there exists 6� such that � 

u0 �� �0 � � � 

u0 

0 � 

�0I ; A ;B x0 

0 

; 

T T 

� �0I ; A ;B 

; � 

� 
x0 

u0 

� 
0 0 �nite zeros 

C D u0 

0 C D 

�0 

is a zero of H(s) if �0 

is a zero of H(s) if characterizes 

there exists x0 

6� 0, u0 

6� 0 there exists x0 

6� 0, u0 

6� 0 �nite zeros 

such that if x(0) � x0 

and u(t) � e�0 

tu0 

such that if x(0) � x0 

and u(t) � e�0 

tu0 

the solution of _x � Ax + Bu the solution of _x � AT x + CT u 

y � Cx + Du satis�es y � BT x + DT u satis�es 

y(t) � 0 y(t) � 0 

Table 27.1: Duality between right and left zeros 
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