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Chapter 26 

Balanced Realization
 

26.1 Introduction 

One popular approach for obtaining a minimal realization is known as Balanced Realization. In this 

approach, a new state-space description is obtained so that the reachability and observability gramians 

are diagonalized. This de�nes a new set of invariant parameters known as Hankel singular values. This 

approach plays a major role in model reduction which will be highlighted in this chapter. 

26.2 Balanced Realization 

Let us start with a system G with minimal realization � � 

A B 

G � : 

C D 

As we have seen in an earlier lecture, the controllability gramian P , and the observability gramian Q 

are obtained as solutions to the following Lyapunov equations 

AP + PA0 + BB 

0 � 0 

A0Q + QA + C 0C � 0: 

P and Q are symmetric and since the realization is minimal they are also positive de�nite. The 

eigenvalues of the product of the controllability and observability gramians play an important role 

in system theory and control. We de�ne the Hankel singular values, �i, as the square roots of the 

eigenvalues of PQ 

4 

�i 

� (�i(PQ)) 

We would like to obtain coordinate transformation, T , that results in a realization for which the con-
trollability and observability gramians are equal and diagonal. The diagonal entries of the transformed 

controllability and observability gramians will be the Hankel singular values. With the coordinate 

transformation T the new system realization is given by � � � � 

T 

;1AT T 

;1B Â  B̂ 

G � � � 

CT D Ĉ  D 

1 

2 : 



and the Lyapunov equations in the new coordinates are given by 

Â(T;1PT 0
;1
) + (T;1PT 0

;1
)Â0 + B̂B̂0 � 0 

Â0	 (T 0QT ) + (T 0QT )Â+ Ĉ 0Ĉ � 0: 

Therefore the controllability and observability gramian in the new coordinate system are given by 

P̂ � T;1PT 0
;1 

Q̂ � T 0QT: 

We are looking for a transformation T such that 10 

�1 

�2
^ ^P � Q � � � 

BBB@


CCCA


:
. . 


 . 


 

�n 

We have the relation 

(T;1PT;1
0 

)(T 0QT ) � �2� 

T;1PQT � �2: (26.1) 

Since Q � Q0 and is positive de�nite, we can factor it as Q � R0R, where R is an invertible matrix. 

;1P 2We can write equation 26.1 as T R0RT  � � , which is equivalent to 	

(RT );1RPR0(RT ) � � 

2: (26.2) 

Equation 26.2 means that RPR0 is similar to �2 and is positive de�nite. Therefore, there exists an 

orthogonal transformation U , U 0U � I , such that 

RPR0 � U�2U 0: (26.3)	 

1 

By setting (RT );1U� 

2 � I , we arrive at a de�nition for T and T;1 as 

2T � R;1U� 

1 

;1 �; 

1 

T � 

2 U 0R:  

With this transformation it follows that 

^ 2 U 0R 0U�; 

1 

P � (�; 

1 

)P (R 2 ) 

2 U 0 �2U 0 

2 )� (�; 

1 

)(U )(U�; 

1 

� �� 

and 

1 1 

Q̂ � (R;1U� 

2 )0R0R(R;1U� 

2 ) 

1 1 

� (� 

2 U 0)(R0
;1
R0RR;1)(U� 

2 ) 

� �: 



26.3 Model Reduction by Balanced Truncation 

Suppose we start with a system � � 

A B 

G � � 

C D 

where A is asymptotically stable. Suppose T is the transformation that converts the above realization 

to a balanced realization, with � �
^ ^A B 

G � ^ � 

C D 

^ ^and P � Q � � � diag(�1� �2� : : : � �n). In many applications it may be bene�cial to only consider 

the subsystem of G that corresponds to the Hankel singular values that are larger than a certain small 

constant. For that reason, suppose we partition � as � � 

�1 

0 

� � 

0 �2 

where �2 

contains the small Hankel singular values. We can partition the realization of G accordingly 

as 2 

Â11 

Â12 

^G � 

4 A21 

Â22 

Ĉ1 

Ĉ2 

Recall that the following Lyapunov equations hold 

3
B̂1 

B̂2 

5 : 

D 

Â� + �Â0 + B̂B̂0 � 0 

Â0�+�Â+ Ĉ 0Ĉ � 0� 

which can be expanded as � � � � � � 

Â  

11�1 

Â  

12�2 

�1Â
0 �1Â

0 B̂ 

1B̂
0 B̂ 

1B̂
0 

+ 

11 21 + 

1 2 � 0� 

Â  

21�1 

Â  

22�2 

�2Â
0 

12 

�2Â
0 

22 

B̂ 

2B̂ 

1 

0 B̂ 

2B̂ 

2 

0 

� � � � � � 

Â0 Â0 ^ ^ Ĉ 0 Ĉ  Ĉ 0 ^ 

11�1 21�2 

�1A11 

�1A12 1 1 1C2+ + � 0: 

Â0 

12�1 

Â0 

22�2 

�2Â  

21 

�2Â  

22 

Ĉ  

2 

0 Ĉ  

1 

Ĉ2
0 Ĉ  

2 

From the above two matrix equations we get the following set of equations 

Â  

11�1 

+�1Â
0 ^ ^ � 0 (26.4)11 

+ B1B1 

0 

^ ^ 

21 

+ B̂ 

1B̂ 

2 

0A12�2 

+�1A
0 � 0 (26.5) 

Â  

22�2 

+�2Â
0 ^ ^ � 0 (26.6)22 

+ B2B2 

0 

Â11
0 �1 

+�1Â  

11 

+ Ĉ  

1 

0 Ĉ  

1 

� 0 (26.7) 



Â0 

21�2 

+�1Â12 

+ Ĉ1 

0 Ĉ2 

� 0 (26.8) 

Â0 

22�2 

+�2Â22 

+ Ĉ2 

0 Ĉ2 

� 0: (26.9)

 

From this decomposition we can extract two subsystems � 

^
G1 

� 

A 

^
11 


 

C1 

� � �


^ ^ ^

 
B1 

A22 

B2� G2 

� ^ : 

D C2 

D
 

Theorem 26.1 G is an asymptotically stable system. If �1 

and �2 

do not have any common diagonal 

elements then G1 

and G2 

are asymptotically stable. 

Proof: Let us show that the subsystem � �


^ ^

A11 

B1G1 

� ^
 

C1 

D
 

^is asymptotically stable. Since A11 

satis�es the Lyapunov equation 

Â11�1 

+�1Â
0 

11 

+ B̂1B̂1 

0 � 0 
 
 

^then it immediately follows that all the eigenvalues of A11 

must be in the closed left half of the complex 

plane� that is, Re�i(Â11) � 0. In order to show asymptotic stability we must show that Â11 

has no 
 

purely imaginary eigenvalues. 

^ ^Suppose j! is an eigenvalue of A11, and let v be an eigenvector associated with j!� (
 11 

;j!I)vA � 

^0. Assume that the Kernel of ( A11 

; j!I) is one-dimensional. The general case where there may b e 

several independent eigenvectors associated with j! can be handled by a slight modi�cation of the 

present argument.
 

Equation 26.7 can be written as
 

(Â  

11 

; j!I)0�1 

+�1(A11 

; j!I)
 + Ĉ1 

0 Ĉ1 

� 0 
 
 

By multiplying the above equation by v on the right and v0 on the left we get 

v 

0(Â  

11 

; j!I)0�1v + v 

0�1(A11 

; j!I)v + v 

0Ĉ1 

0 Ĉ1v � 0 

which implies that (Ĉ  

1v)
0(Ĉ1v) � 0, and this in turn implies that 

Ĉ1v � 0 : (26.10)
 

Again from equation 26.7 we get 

(Â  

11 

; j!I)0�1v +�1(A11 

; j!I)v + Ĉ1 

0 Ĉ  

1v � 0
�
 

which implies that 

(Â  

11 

; j!I)0�1v � 0
: (26.11)
 

Now we multiply equation 26.4 from the right by �1v and from the left by v0�1 

to get 

v 

0�1(Â11 

; j!I)�2
1v + v 

0�2
1(A11 

; j!I)0�1v + v 

0�1B1B1
0 �1v � 0:
 



This implies that v0�1B1)(B1
0 �1v) � 0, and B1

0 �1v � 0. By multiplying equation 26.4 on the right by 

�1v we get 

(Â  

11 

; j!I)�1
2 v +�1(A11 

; j!I)0�1v + B̂ 

1B̂ 

1
0 �1v � 0 

and hence 

(Â  

11 

; j!I)�2
1v � 0: (26.12) 

Since that the kernel of (Â  

11 

; j!I) is one dimensional, and both v and �2
1v are eigenvectors, it follows 

that �2
1v � �̂2v, where ^ � is one of the diagonal elements in �1

2 . 

Now multiply equation 26.5 on the left by v0�1 

and equation 26.8 by v0 on the left we get 

v 

0�1Â  

12�2 

+ v 

0�2
1Â

0 

21 

� 0 (26.13) 

and 

0 ^ ^v A0 0�1A12 

� 0: (26.14)21�2 

+ v 

�From equations 26.13 and 26.14 we get that 

0 ^ 

0 ^ ;v A0 + �̂2v A0 � 0�21�
2
2 21 

which can be written as � � 

(v 

0Â0 ;�2 + ^ �2I � 0:21) 2 

Since by assumption �2
2 

and �2
1 

have no common eigenvalues, then �̂2I and �2 

have no common 

eignevalues, and hence A21v � 0. We have 

(Â  

11 

; j!I)v � 0 

Â21v � 0� 

which can be written as � � � � � �
^ ^A11 

A12 

v v 

^ ^ 

� j! : 

A21 

A22 

0 0 

^This statement implies that j! is an eigenvalue of A, which contradicts the assumption of the theorem 

stating that G is asymptotically stable. 
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