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Chapter 25 

Minimal State-Space Realization
 

25.1 Introduction 

Our goal in this lecture and a couple that follow is to further explore the \structural" signi�cance 

of the assumptions of reachability and observability, and to understand their role in connecting the 

input/output (or transfer function) description of a system to its internal (or state-space) description. 

The development will be phrased in the language of DT systems, but the results hold unchanged (apart 

from some details of interpretation) for the CT case. 

25.2 The Kalman Decomposition 

In earlier lectures we presented two types of standard forms, one that depended on a separation of 

the state space into the reachable subspace and its complement, and another that separated the state 

space into the unobservable subspace and its complement. The question naturally arises as to whether 

these two standard forms can somehow be combined. The Kalman decomposition does exactly that. 

Suppose (A�B�C�D) are the matrices that specify the given nth-order LTI state-space model, 

and suppose we construct a transformation matrix � � 

T � 
Tro 

Tro 

Tro 

Tro  

(25.1) 

where the submatrices are de�ned as follows: 

1. The columns of Tro form a basis for R \O , the subspace that is both reachable and unobservable 

(verify that the intersection of two subspaces is a subspace)� � � 

2. Tro complements Tro in the reachable subspace, so that Ra  
Tro 

Tro 

� R � � � 

3. Tro complements Tro in the unobservable subspace, so that Ra  
Tro 

Tro 

� O � � � 

4. Tro  

complements 
Tro 

Tro 

Tro 

to span R
n, so that T is invertible. 

Of course, any of these matrices may turn out to be of dimension 0, e.g. when the system is both 

reachable and observable, the matrix Tro is n � n, and all the other submatrices disappear. We now 



perform a similarity transformation using T , thereby carrying out the mapping ;
 �
 

T 

;1AT� T 

;1 A�Bb� C 

b
 b � D):
(A� B� C� D) ;! B� CT� D � (


The system (A�b Bb� Cb
 � D) is said to be in Kalman decomposed form. This is a standard form that has 

a very illuminating structure, which we will now deduce based on the form of the T matrix and the 

following additional constraints: 

AR � R (25.2) 

AO � O (25.3) 

b 

Ra  (B) � R (25.4) 

O � Null(C): (25.5) 

Equations (25.2) and (25.3) simply restate the fact that the reachable and unobservable subspaces are bA,
AT � TA

A-invariant. To determine the form of we begin by writing 

which can be expanded into 32 664
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���� 

A T
 � 
TTro 

ro 

Tro 

Tro  

Tro 
ro 

Tro 

Tro  

: (25.6)


From (25.2) and (25.3), we ha ve that the range of ATro remains in Ra  (Tro), the space that is both 

reachable and unobservable. From (25.6), 2
 3
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b 

A41 

so we must have A21, A31 

and A41 

� 0. Similarly, from (25.2) we deduce that A32 

and A42 

must be 

zero. From (25.3), it follows that A23 

and A43 

are zero. By applying all of these conditions (and with 

a notational change in the subscripts), we arrive at the �nal form of A : 32 

Aro 

A12 

A13 

A14 

0 Aro 

0 A24
664


775


b

b

A � 

0 0 0 Aro 

Proceeding with the same line of logic, and noting conditions (25.4) and (25.5), we have 

and, from CT � C

: (25.7)



 0 0 Aro 

A34 


 

3
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B�� 664
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B � TBb �


roTro 

Tro 

Tro 

Tro  

� (25.8)
 

0
 

0
 

,
 ���� 

C
 
T
 T � 0 C 0 C : (25.9)Tro 
ro 

Tro ro 
ro ro 



In the resulting Kalman-decomposed form ( A�b Bb� Cb� D), the subsystem (Aro� Bro� Cro� D) is both 

reachable and observable (prove this!). Similarly, the reachable subsystem is �� � � �	 � 

Aro 

A12 

Bro 

� � 

� � 
0 Cro 

� D 

0 Aro 

Bro 

with its unobservable portion already displayed in standard form, and the observable subsystem is �� � � �	 � 

Aro 

A24 

Bro 

� � 

� � Cro 

Cro 

� D 

0 Aro 

0 

with its reachable portion already displayed in standard form. The Figure 25.1 constitutes a represen-
tation of the system (A�b Bb� Cb� D): 

- �ro 

-	 - -y 

�ro	 6u 

�ro 

�ro 

Figure 25.1: Kalman Decomposition of a State Space Model. 

As can be shown quite easily, the Kalman decomposition is unique up to a similarity transforma-
tion that has the same block structure as Ab. (To show this for yourself, �rst prove that the columns 

of full-column-rank matrices P , Q are bases for the same space i� P � QM for some invertible matrix 

M .) It follows that: 

�	 the matrices Aro� Aro� Aro� Aro 

are uniquely de�ned up to a similarity transformation | their 

eigenvalues (and indeed their Jordan structure) are thus uniquely de�ned, and may be classi�ed 

as ro�  ro�  ro� ro respectively� 	

�	 the ro subsystem (as also the reachable subsystem and the observable subsystem) is uniquely 

de�ned up to similarity. 



It is clear from the Kalman decomposition and the associated �gure above that the input/output 

behavior of the system for zero initial conditions is determined entirely by the ro part of the system. 

Also, the output behavior for arbitrary input and initial conditions is determined by the observable 

part of the system. 

25.3 State-Space Realizations of Transfer Functions 

Given a DT LTI state-space model (A� B� C� D), we have seen that its transfer function is simply 

H(z) � C(zI ; A);1B + D: 

(For a CT system (A� B� C� D), we obtain the same expression for the transfer function, except that z 

is replaced by s.) For a MIMO system with m inputs and p outputs, this results in a p � m matrix 

of rational functions of z (or s, in CT). Recall that H(z) is in general proper (i.e., all entries have 

numerator degree less than or equal to the degree of the denominator), and for jzj ! 1, we have 

H(z) ! D (so the transfer function is strictly proper if D � 0). 

Now consider the converse problem. Given a transfer function, can one always �nd a state-space 

representation� This is called the realization problem. 

De�nition 25.1 (A� B� C� D) is called a realization of the transfer function H(z) if 

H(z) � C(zI ; A);1B + D: 

To phrase the above problem in the time domain, expand H(z) as 

H(z) � H0 

+ z;1H1 

+ z;2H2 

+ : : : (25.10) 

In the SISO DT case, we know that H0� H1� H2� : : : constitute the output response at time 0� 1� 2� : : : 

to a unit sample at time 0 applied to the input of the system when it is at rest (x(0) � 0), i.e. the 

sequence fHkg is the unit-sample response or \impulse" response of the system. In the MIMO case, 

the interpretation is similar, except that now the ijth entry of Hk 

is the value at time k of the zero-state 

response at the ith output to a unit impulse at the jth input. (The Hk 

are also referred to as Markov 

parameters.) For the state-space model (A� B� C� D), it is straightforward to see that 

H0 

� D�


Hk 

� CAk;1B� k � 1 (25.11)


This can be veri�ed directly in the time domain, or by expanding (zI ; A);1 in (25.3) as 

(zI ; A);1 � z;1I + z;2A + z;3A2 + � � � (25.12) 

(an expansion that is valid for jzj greater than the spectral radius of A) and then equating the coe�-
cients of z;k with those in the expression (25.10). The realization problem, i.e. the problem of �nding 

(A� B� C� D) such that (25.3) holds, can now be rephrased equivalently as that of �nding a state-space 

model (A� B� C� D) such that the relations in (25.11) hold. 

It is evident that state-space realizations are not unique. For instance, given one realization, we 

can obtain an in�nite number of realizations through similarity transformations. (You should verify 



algebraically that this is indeed the case.) However, the Kalman decomposition makes clear that there 

are still other possible realizations. Speci�cally, you should verify that 

� C( 

� Cro(zI ; Aro)
;1Bro 

+ D (25.13) 

i.e. only the ro part of a system contributes to its transfer function, so if a given realization is not 

ro, then its ro subsystem (or any similarity transformation of it) constitutes an alternative realization 

of H(z). Going in the other direction, one can obtain a new realization from a given one by adding 

unreachable and/or unobservable dynamics. Thus, di�erent realizations of H(z) can di�er in their 

b

orders. A minimal realization is one of least possible order. 

25.4 Minimal Realizations 

SISO Systems 

To get some feel for how realizations relate to transfer functions, consider a SISO system in controller 

canonical form: 

eA � 

; Ab);1Bb + DH(z) I
z 

3232 

1
;a1 

: : : : : : ;an 

16664


7775


6664


7775


0
eb � 


 
 

�
 .
.
 .
 .
.
 .
 (25.14)



 

1 0 0
�� ec � 

(You should draw yourself a block diagram of this, using delays, adders, gains.) Now verify that its 

transfer function is 

c1z
n;1 + � � � + cn

H(z) � + d (25.15) 

zn + a1zn;1 + � � � + an 

We can argue quite easily that there is a realization of order � n for this H(z) i� the numerator and 

denominator polynomials, c(z) � c1z
n;1 + � � � + cn 

and a(z) � zn + a1z
n;1 + � � � + an 

respectively, 

have a common factor that cancels out. (If there is such a factor, we can get a controller canonical 

form realization of order � n, by inspection. Conversely, if there is a realization of order � n, then 

its transfer function will have denominator degree � n, which implies that c(z), a(z) above have a 

common factor.) 

Now, a common factor (z ; �) between c(z) and a(z) exists i� 2
 3
 

�n;1 

c1 

: : : cn 

� d: 

6664


. . .
 


 � 

1 

7775


�� 

c1 

: : : cn 

� 0 (25.16)


jfor some � that is a root of a(z) � zI
 , i.e. for some � that is an eigenvalue of Verifying 

eee; Aj A. 

that the column vector in the preceding equation is the corresponding eigenvector of A, 

from the modal test for observability that the condition in this equation is precisely equivalent to 

unobservability of the controller-form realization. We are now in a position to prove the following 

result: 

we recognize 



Theorem 25.1 A state-space realization of a SISO transfer function H(z) is minimal i� it is reach-
able and observable. 

Proof. 

If the realization is not ro, then the ro part of its Kalman decomposition will yield a lower-order 

realization, which means the original realization was not minimal. 

Conversely, if the realization is reachable and observable, it can be transformed to controller 

canonical form, and the denominator jzI ; Aj of H(z) will have no cancellations with the numerator, 

so the realization will be minimal. 

MIMO Systems 

e 

The preceding theorem also holds for the MIMO case, as we shall demonstrate now. Our proof of the 

MIMO result will use a di�erent route than what was used in the SISO case, because a proof analogous 

to the SISO one would rely on machinery | such as matrix fraction descriptions of rational matrices 

| which we shall not be developing for the MIMO case in this course. There is nevertheless some 

value in seeing the SISO arguments above, because they provide additional insight into what is going 

on. 

Theorem 25.2 A realization is minimal i� it is reachable and observable. 

Proof. If a realization is not reachable or not observable, we can use the Kalman decomposition to 

extract its ro part, and thereby obtain a realization of smaller order. 

For the converse, suppose (A� B� C� D) is a reachable, observable realization of order n, but is 

not minimal. Then there is a minimal realization (A�� B�� C�� D�) of order n� � n (and necessarily 

reachable and observable, from the �rst part of our proof). Now 2
 3
 

C 

� 

6664 . . 


 . 

CAn;1 

7775


CA
 � �
 

n;1BB AB : : : A
OnRn 

2 66664


3


H1 

H2 

� � � Hn 

H2 

,, 

..

. 77775


� O� R� (25.17)n n� 

The reachability and observability of (A� B� C� D) ensures that rank(OnRn) � n (as can be veri�ed 

using Sylvester's inequality) while rank(On 

� Rn 

� ) � rank(On 

� 

� 

Rn 

� 

� 

) � n�, but then (25.17) is impossible. 

Hence there is no realization of order less than n if there is a reachable and observable one of order n. 

The following theorem shows that minimal realizations are tightly connected� in fact there is in 

e�ect only one minimal realization of a given H(z), up to a similarity transformation (or change of 

coordinates) ! 

Theorem 25.3 All minimal realizations of a given transfer function are similar to each other. 

,
. . . , 
. . . , 

Hn 

� � � � � � H2n;1 



~ C~� D~) are two minimal realizations of order n. Then D � D~Proof. Suppose (A� B� C� D) and (A� B~� 

~A~k ~and CAkB � C B� k � 0, so 

OnRn 

� O~ 

nR~ 

n: (25.18) 

Also 

~ ~ ~OnARn 

� OnARn 

(25.19) 

Let us introduce the notation M+ to denote the (\Moore-Penrose") pseudo-inverse of a matrix M . If M 

has full column rank, then M+ � (M 0M);1M 0, while if M has full row rank, then M+ � M 0(MM 

0);1 

(and in the general case the pseudo-inverse can be explicitly written in terms of the SVD of M , but 

we shall not need this case for the proof). It is then easy to verify from (25.18) that 

~ ~RnRn 

+ � On 

+On 

� T (25.20) 

and that 

T 

;1 � O~ 

n 

+On 

� R~ 

nRn 

+ (25.21) 

(You should note how the reachability and observability of the minimal realizations are invoked to 

make the necessary arguments.) It is then easy to check, using (25.18) and (25.19) that 

~ ~ ~AT � TA� B � TB� C � CT (25.22) 

i.e. the realizations are similar. 

All of the above results carry over to the CT case. The only modi�cation is in the interpretation 

of the Markov parameters� a CT interpretation can be found in terms of moments of the impulse 

response, but is not particularly interesting. 

We have seen how to obtain realizations of SISO transfer functions, by building on canonical 

forms. The situation is more involved for MIMO transfer functions. One brute-force realization 

approach would be to simply realize all of the SISO elements hij 

(s) of H(s), and then connect them 

to form the outputs. 

Example 25.1 (We use a CT system in this example to make the point that all the pre-
ceding development carries over unchanged to the CT case.) The 2 � 2 transfer function � �1 1 

H(s) � 

s;1
1 

can be immediately realized in state-space form by construct-
0 s;1 

ing (minimal) realizations of the individual entries of H(s) and interconnecting them as 

needed: 



�� 

Z �� 

u1 - x1 - x1 - -+
_

+ 

y1�� ��


6 6 

�1 

u2 

� 

Z��


_
+ 

x2 - x2 - y2��


6 

�1 

The corresponding state-space model is � � � � � � � � 

A � 

1 

0 

0 

1 

B � 

1 

0 

0 

1 

C � 

1 

0 

0 

1 

D � 

0 

0 

1 

0 

and this is easily veri�ed to be reachable and observable, hence minimal. However, the 

component-wise realization procedure is not guaranteed to produce a minimal realization. 

For instance, with � �
1 1H(s) � s;1 s;1 

� 

combining component-wise realizations into an overall realization would lead to a second-
order realization, but there is a (minimal) realization of order 1 (which you should �nd!). 

Exercise 25.4 guides you through a general procedure for the construction of a minimal realization 

if the minimal order is known, using the Markov parameters computed from the transfer function. 

Following, we describe another approach (\Gilbert's method") that is based on the residues at the 

poles of the transfer matrix. 

Gilbert's Realization 

Suppose we have a proper matrix transfer function H(z), and we factor out the polynomial d(z) that 

is the least common denominator of all the entries of H(z) (i.e. the least common multiple of the 

denominators of all the entries). If d(z) has no repeated roots, then it is possible to construct a 

minimal realization via Gilbert's method. (There is a generalization for repeated poles, but we omit 

it.) First apply a partial fraction expansion to each of the elements of H(z) and collect residues for 

each distinct pole. Denoting the q roots of d(z) by �1� � � � � �q, we can write the transfer function matrix 

in the following form: 

qX 1 

H(z) � D + Ri 

z ; �ii�1 

where Ri 

is also p � m and D � H(1). Let us denote the rank of Ri 

by ri� it will turn out that ri 

is 

the minimum number of poles with location �i 

required to realize H(z). Since the rank of Ri 

is ri, this 



matrix can be decomposed as the product of two matrices with full column and row rank, respectively, 

each with rank ri: 

Ri 

� Ci
p�ri Bi

ri 

�m� rank(Ri) � ri 

It is now easy to verify that H(z) � C(zI ; A);1B + D, where 32 

�1 

. . 0. 

�1 |
 {z }
 

r1 

.
 .
 .


�q 

.0 

. . 

A �
 

66666666666666664


77777777777777775
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Bq 


 


 

�q 


 |
 {z
rq 

Cq 
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�


C �

C1 

C2 

�
 � � � �
 D :


This realization is easily veri�ed to be reachable and observable, hence minimal. 



Exercises
 

Exercise 25.1 Find a state-space description of the circuit below, in the form x_ (t) � Ax(t) + Bi(t), 

with output equation v(t) � Cx(t) + Di(t), choosing iL 

and vC 

as state variables, and with R1, R2, L 

and C all equal to 1. 

(a)	 Is the system controllable� Is it observable� What is its transfer function� (Evaluate the trans-
fer function using the state-space description, and make sure that all common factors between 

numerator and denominator are cancelled. Then check your answer by direct impedance calcu-
lations with the circuit.) 

(b)	 What are the eigenvalues and the left and right eigenvectors of A� Is A diagonalizable� Also 

verify that your eigenvectors are consistent with your conclusions regarding controllability and 

observability in (a). 

(c)	 By carefully interpreting the results of (a) and (b), or by explicitly computing the Kalman de-
composition, determine how many eigenvalues of A are in each of the following categories: 

(i) co: controllable and observable� 

(ii) co�: controllable and unobservable� 

(iii) c�o�: uncontrollable and unobservable� 

(iv) co� : uncontrollable and observable. 

(d)	 Only one of the following equations (for some appropriate choice of the parameters) precisely 

represents the set of voltage waveforms v(t) that are possible for this circuit, assuming arbitrary 

initial conditions. Determine which one, and specify the coe�cients, stating your reasoning. 

(i) v(t) � �i(t)� 

(ii) [dv(t)�dt] + �v(t) � [di(t)�dt] + �i(t)� 

(iii) [d2v(t)�dt2] + �[dv(t)�dt] + �v(t) � [d2i(t)�dt2] + �[di(t)�dt] + �i(t). 

Exercise 25.2 (a) Find a third-order state-space realization in controller canonical form for the 

transfer function H1(s) � (s + f)�(s + 4)3, where f is a parameter. (To do this, assume the \A" 

and \b" of the state-space model are in controller form, then �nd what \c" and \d" need to be 

to make the transfer function come out right.) For what values of f does your model lose (i) 

observability� (ii) controllability� 



Similarly, �nd a �rst-order controller canonical form realization of the transfer function H2(s) � 

1�(s ; 2). 

(b)	 Now suppose the realizations in (a) are connected in cascade, with the output of the �rst system 

used as the input to the second. The input to the �rst system then becomes the overall system 

input, and the output of the second system becomes the overall system output: 

u ;! H1(s) ;! H2(s) ;! y 

Write down a fourth-order state-space description of the cascade. Is the cascaded system asymp-
totically stable� | and does your answer depend on f� 

Now determine for what values of f the cascaded system loses (i) observability, (ii) controllability. 

Interpret your results in terms of pole-zero cancellations between H1(s) and H2(s). Is there a 

value of f for which the cascaded system is bounded-input/bounded-output (BIBO) stable but 

not asymptotically stable. 

Exercise 25.3 Suppose a least one eigenvalue of the n�n matrix A is at 0, and that this eigenvalue is 

reachable with input vector b and observable with output vector c. Show that A + bgc, for any nonzero 

g, has no eigenvalues at 0. 

Exercise 25.4 You are given the Markov parameters fHig associated with a particular p� m transfer 

matrix H(z) � H0 

+ z;1H1 

+ z;2H2 

+ � � �, and you are told that all minimal realizations of H(z) are 

of a given order n. This problem aims at �nding a minimal realization from the Markov parameters. 

Let x(k +1) � Ax(k)+Bu(k) � y(k) � Cx(k)+Du(k) denote some speci�c, but unkown, minimal 

realization of H(z), with Bn 

and Cn 

denoting its reachability and observability matrices respectively. 

(For notational convenience, we shall drop the subscript n in what follows.) We shall construct a 

realization of H(z) that will be shown to be similar to this minimal realization, and therefore itself 

minimal. The following two matrices (with \block-Hankel" structure) will be needed for this problem: 10 

H1 

H2 

� � � Hn


H2 

H3 

� � � Hn+1



 � � � � � � � � � � � � 

BB@


CCA


K1 

� 


 

Hn 

Hn+1 

� � � H2n;1 

H2 

H3 

� � � Hn+1


H3 

H4 

� � � Hn+2


10 BB@


CCA


K2 

� � � � � � � � � � � � � 


 

Hn+1 

Hn+2 

� � � H2n 



(a) Show that K1 

� CB and K2 

� CAB. 

[(b)] Show that K1 

has rank n. 

[(c)] We can decompose K1 

(for example using its SVD) into a product LR, where the left 

factor L has full column rank (� n, from (b)), and the right factor has full row rank (� n also). 

Show that B � T1R and C � LT2 

for some nonsingular matrices T1 

and T2, and prove that 

T2 

� T1 

;1 . 

(d)	 De�ne C1 

to be the matrix formed from the �rst p rows of L, and show that C1 

� CT1. Similarly, 

de�ne B1 

to be the matrix formed from the �rst m columns of R, and show that B1 

� T1 

;1B. 

(e)	 De�ne A1 

� L+K2R
+ , where the superscript + denotes the pseudo-inverse of the associated 

matrix, and show that A1 

� T1 

;1AT1. 

The desired minimal realization is now (A1� B1� C1� D1), where D1 

� H0. 

Exercise 25.5 (a) Obtain a minimal realization of the system: 2 s 1 

3 

(s;1)2 (s;1) 

H(s) � 

4 5: 

;6 1 

(s;1)(s+3) (s+3) 

Explicitly verify its minimality. 

(b)	 Compute the poles (including multiplicities) of this transfer function using the minimal realization 

you obtained. 



Exercise 25.6 The two-input, two-output system below is obtained by interconnecting four SISO 

subsystems as shown. (Note, incidentally, that none of the SISO transfer functions has any zeros.) 

The scalar gain � is real and nonzero, but can be either positive or negative. 

+�� y1(s)u1(s) - 1 - -��s 

6+

- 1 

s + 1 

- � 

s ; 1 

�+��u2(s) - 1 - -y2(s) 

s + 2 +�� 

(a)	 Assemble minimal state-space realizations of the SISO subsystems into an overall state-space 

description of the two-input, two-output system. Determine whether the resulting system is 

reachable and observable, and also �nd its natural frequencies. 

(b)	 Determine the transfer function matrix G(s) that relates the two outputs to the two inputs. How 

do the poles of G(s) relate to the natural frequencies that you found in (a)� 

(c)	 Compute the number and locations of the MIMO transmission zeros as a function of �, by �nding 

expressions for the frequencies at which G(s) loses rank. Are there any allowed (i.e. nonzero) 

values of � that yield transmission zeros at the same locations as poles� 

(d)	 Now set � � +1. Determine the transmission zero location s � � and the corresponding input 

direction u0 

from the null space of the matrix G(�). Now obtain the analytical solution to the 

state equations for arbitrary values of the initial state at time 0, as well as the corresponding 

analytical expressions for the two outputs y1(t) and y2(t), when the system is driven by the 

speci�c input u(t) � u0e
�t for t � 0. (Note that the expressions for the outputs do not contain 

the zero-frequency term e�t � it has been \absorbed" by the system.) Also determine what initial 

state would yield both y1(t) � y2(t) � 0 for all t � 0, with this particular input. 



MIT OpenCourseWare
http://ocw.mit.edu 

6.241J / 16.338J Dynamic Systems and Control 
Spring 2011 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms



