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Chapter 22 

Reachability of DT LTI Systems
 

22.1 Introduction 

We now begin a series of lectures to address the question of synthesizing feedback controllers. This 

objective requires a detailed understanding of how inputs impact the states of a given system, a notion 

we term reachability. Also, this objective requires a detailed understanding of the information the 

output provides about the rest of the states of the dynamic system, a notion we term observability. 

These notions together de�ne the minimal set of conditions under which a stabilizing feedback controller 

exists. 

22.2 The Reachability Problem 

In previous lectures we have examined solutions of state-space models, the stability of undriven models, 

some properties of interconnections, and input-output stability. We now turn to a more detailed 

examination of how inputs a�ect states, for the nth-order DT system 

x(i + 1) � Ax(i) + Bu(i) : (22.1) 

(The discussion of reachability in the DT case is generally simpler than in the CT case that we will 

consider next Chapter, but some structural subtleties that are hidden in the CT case become more 

apparent in the DT case. For the most part, however, DT results parallel CT results quite closely.) 

Recall that 
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where the de�nition of Rk 

and Uk 

should be clear from the equation that precedes them. Now consider 

whether and how we may choose the input sequence u(i), i 2 [0� k; 1], so as to move the system from 

x(0) � 0 to a desired target state x(k) � d at a given time k. If there is such an input, we say that 

the state d is reachable in k steps. It is evident from (22.2) that | assuming there are no constraints 

placed on the input | the set R k 

of states reachable from the origin in k steps, or the k-reachable set, 

is precisely the range of Rk, i.e. 

R k 

� Ra(Rk) (22.3) 

The k-reachable set is therefore a subspace, and may be referred to as the k-reachable subspace. We 

call the matrix Rk 

the k-step reachability matrix. 

Theorem 22.1 

For k � n � `, 

Ra(Rk) � Ra(Rn) � Ra(R`) (22.4) 

so the set of states reachable from the origin in some (�nite) number of steps by appropriate choice of 

control is precisely the subspace of states reachable in n steps. 

Proof. 

The fact that Ra(Rk) � Ra(Rn) for k � n follows trivially from the fact that the columns of Rk 

are in-
cluded among those of Rn. To show that Ra(Rn) � Ra(R`) for ` � n, note from the Cayley-Hamilton 

theorem that Ai for i � n can be written as a linear combination of An;1� � � � � A� I , so all the columns 

of R` 

for ` � n are linear combinations of the columns of Rn. Thus (22.4) is proved, and the rest of 

the statement of the theorem follows directly. 

In view of Theorem 22.1, the subspace of states reachable in n steps, i.e. Ra(Rn), is referred 

to as the reachable subspace, and will be denoted simply by R � any reachable target state, i.e. any 

state in R , is reachable in n steps (or less). The system is termed a reachable system if all of R
n is 

reachable, i.e. if rank(Rn) � n. The matrix h i 

Rn 

� An;1B j An;2B j � � � j B � (22.5) 

is termed the reachability matrix (often written with its block entries ordered oppositely to the order 

that we have used here, but this is not signi�cant). 

Example 22.1 Consider the single-input system � � � � � � � � 

x1(k + 1) 1 0 x1(k) 1 

� + u(k): 

x2(k + 1) 0 1 x2(k) 1 

The reachable subspace is evidently (from symmetry) the line x1 

� x2. This system is 

not reachable. 

The following alternative characterization of R k 

is useful, particularly because its CT version 

will play an important role in our development of the CT reachability story. Let us �rst de�ne the 

k-step reachability Gramian Pk 

by 

k;1X 

Pk 

� RkRk
T � AiBBT (AT )i (22.6) 

i�0 

This matrix is therefore symmetric and positive semi-de�nite. We then have the following result. 



Lemma 22.1 

Ra(Pk) � Ra(Rk) � R k 

: (22.7) 

Proof. 

It is easy to see that Ra(Pk) � Ra(Rk). For the reverse inclusion, we can equivalently show that 

Ra�(Pk) � Ra�(Rk) 

For this, note that 

q 

T Pk 

� 0 �) q 

T Pkq � 0 

() hRk
T q� Rk

T qi � 0 

() q 

T Rk 

� 0 

so any vector in Ra�(Pk) is also in Ra�(Rk).
 

Thus the reachable subspace can equivalently be computed as Ra(P`) for any ` � n. If the system is
 

stable, then P1 

:� P is well de�ned, and is easily shown to satisfy the Lyapunov equation
 

APAT ; P � ;BBT (22.8) 

We leave you to show that (22.8) has a (unique) positive de�nite (and hence full rank) solution P if 

and only if the system (A�B) is reachable. 

Reachability from an Arbitrary Initial State 

Note from (22.2) that getting from a nonzero starting state x(0) � s to a target state x(k) � d requires 

us to �nd a Uk 

for which 

d; Ak s � Rk 

Uk 

(22.9) 

For arbitrary d, s, the requisite condition is the same as that for reachability from the origin. Thus we 

can get from an arbitrary initial state to an arbitrary �nal state if and only if the system is reachable 

(from the origin)� and we can make the transition in n steps or less, when the transition is possible. 

Controllability versus Reachability 

Now consider what is called the controllability problem, namely that of bringing an arbitrary initial 

state x(0) to the origin in a �nite number of steps. From (22.2) we see that this requires solving 

;Ak x(0) � Rk 

Uk 

(22.10) 

If A is invertible and x(0) is arbitrary, then the left side of (22.10) is arbitrary, so the condition for 

controllability of x(0) to the origin in a �nite number of steps is precisely that rank(Rk) � n for some 

k, i.e. just the reachability condition that rank(Rn) � n. 

If, on the other hand, A is singular (i.e. has eigenvalues at 0), then the left side of (22.10) will 

be con�ned to a subspace of the state space, even when x(0) is unrestricted. The range of Ak for 

a singular A may decrease initially, but Ra(Ak) � Ra(An) for k � n (since by stage n the Jordan 

blocks associated with the zero eigenvalues of A are all guaranteed to have been \zeroed out" in An). 

Meanwhile, as we have seen, the range of Rk 

may increase initially, but Ra(Rk) � Ra(Rn) for k � n. 



It follows from these facts and (22.10) that an arbitrary initial state is controllable to 0 in �nite time, 

i.e.	 the system is controllable, i� 

Ra  (An) � Ra  (Rn) (22.11) 

For invertible A, we recover our earlier condition. (The distinction between reachability and controlla-
bility is not seen in the CT case, because the state transition matrix there is eAt rather than Ak, and 

is always invertible.) 

22.3 Modal Aspects 

The following result begins to make the connection of reachability with modal structure. 

Corollary 22.1 

The reachable subspace R is A-invariant, i.e. x 2 R �) Ax 2 R . We write this as AR � R 

Proof. 

We �rst show 

Ra  (ARn) � Ra  (Rn) (22.12) 

For this, note that	 � � 

An;1B � � � ABARn 

� 
AnB 

The last n ; 1 blocks are present in Rn, while the Cayley-Hamilton theorem allows us to write AnB 

as a linear combination of blocks in Rn. This establishes (22.12). It follows that x � Rn� �) Ax � 

ARn� � Rn� 2 R . 

Some feel for how this result connects to modal structure may be obtained by considering what 

happens if the subspace R is one-dimensional. If v (6� 0) is a basis vector for R , then Corollary 22.1 

states that 

Av � �v (22.13) 

for some �, i.e. R is the space spanned by an eigenvector of A. More generally, it is true that any 

A-invariant subspace is the span of some eigenvectors and generalized eigenvectors of A. (It turns out 

that R is the smallest A-invariant subspace that contains Ra  (B), but we shall not pursue this fact. ) 

Standard Form for Unreachable Systems 

If a system of the form (22.1) is unreachable, it is convenient to choose coordinates that highlight this 

fact. Speci�cally, we shall show how to change coordinates (using a similarity transformation) from 

x � Tz to � � 

z � T 

;1 x � 

z1 

z2 

where z1 

is an r-vector and z2 

is an (n ; r)-vector, with r denoting the dimension of the reachable 

subspace, r � dim R . In these new coordinates, the system (22.1) will take the form � � � � � � � � 

z1(k + 1) 

A1
�	


A12 

z1(k) + 

B1 u(k) (22.14)
z2(k + 1) 0 A2 

z2(k) 0 

with the reachable subspace being the subspace with z2 

� 0. We shall refer to a system in the form 

(22.14) as being in the standard form for an unreachable system. 



The matrix T is constructed as follows. Let T1 

n�r be a matrix whose columns form a basis for 

the reachable subspace, i.e. 

Ra(T1) � Ra(Rn) � 

and let T2 

n�(n;r) 

be a matrix whose columns are independent of each other and of those in T1. Then 

choose 

T � [ T1 

j T2 

] : 

This matrix is invertible, since its columns are independent by construction. We now claim that � � 

A [ T1 

j T2 

] � TA� � [ T1 

j T2 

] 

Ar
1 

�r A12 (22.15)
0 A2 2 3 

Br�m 

1 

B � TB� � [ T1 

j T2 

] 

4 ;;; 

5 : 

0 

Our reasoning is as follows. Since the reachable subspace is A-invariant, the columns of AT1 

must 

remain in Ra(T1), which forces the 0 block in the indicated position in A�. Similarly, the presence of 

the zero block in B� is a consequence of the fact that the columns of B are in the reachable subspace. 

The above standard form is not uniquely de�ned, but it can be shown (we leave you to show it!) 

that any two such standard forms are related by a block upper triangular similarity transformation. 

As a result, A1 

and A2 

are unique up to similarity transformations (so, in particular, their Jordan 

forms are uniquely determined). 

From (22.14) it is evident that if z2(0) � 0 then the motion of z1(k) is described by the rth-order 

reachable state-space model 

z1(k + 1) � A1z1(k) + B1u(k): (22.16) 

This is also called the reachable subsystem of (22.1) or (22.14). The eigenvalues of A1, which we may 

refer to as the reachable eigenvalues, govern the ZIR in the reachable subspace. Also, the behavior of 

z2(k) is described by the undriven state-space model 

z2(k + 1) � A2z2(k) (22.17) 

and is governed by the eigenvalues of A2, which we m ay call the unreachable eigenvalues. 

There is no loss of generality in assuming a given unreachable system has been put in the standard 

form for unreachable systems� proofs of statements about unreachable systems are often much more 

transparent if done in these coordinates. 

Modal Reachability Tests 

An immediate application of the standard form is to prove the following modal test for (un)reachability. 

Theorem 22.2 

The system (22.1) is unreachable if and only if wT B � 0 for some left eigenvector wT of A. We say 

that the corresponding eigenvalue � is an unreachable eigenvalue. 

Proof. 

If wT B � 0 and wT A � �wT with wT � 0, then 6 wT AB � �wT B � 0 and similarly wT AkB � 0, so 

wT Rn 

� 0, i.e. the system is unreachable. 



Conversely, if the system is unreachable, transform it to the standard form (22.14). Now let w2 

T 

denote a left eigenvector of A2, with eigenvalue �. Then wT � [ 
0 w2 

T ] is a left eigenvector of the 

transformed A matrix, namely A�, and is orthogonal to the (columns of the) transformed B, namely B�. 

An alternative form of this test appears in the following result. 

Corollary 22.2 

The system (22.1) is unreachable if and only if [ 
zI ; A B ] loses rank for some z � �. This � is 

then an unreachable eigenvalue. 

Proof. 

The matrix [ 
zI ; A B ] has less than full rank at z � � i� wT [ 

sI ; A B ] � 0 for some wT 6� 0. 

But this is equivalent to having a left eigenvector of A being orthogonal to (the columns of) B. 

Example 22.2 

Consider the system � � � � 

3 0 1 

x(k + 1) � x(k) + u(k)
0 3 1 | {z } | {z }
A B 

T TLeft eigenvectors of A associated with its eigenvalue at � � 3 are w1 

� [ 
1 0 ] and w�[ 0 1 ], 

neither of which is orthogonal to B. However, wT � [ 
1 ;1 ] is also a left eigenvector associated 0 

with � � 3, and is orthogonal to B. This example drives home the fact that the modal unreachability 

test only asks for some left eigenvector to be orthogonal to B. 

Jordan Chain Interpretation 

Recall that the system (22.1) may be thought of as having a collection of \Jordan chains" at its 

core. Reachability, which we �rst introduced in terms of reaching target states, turns out to also 

describe our ability to independently \excite" or drive the Jordan chains. This is the implication of 

the reachable subspace being an A-invariant subspace, and is the reason why the preceding modal tests 

for reachability exist. 

The critical thing for reachability is to be able to excite the beginning of each chain� this excitation 

can then propagate down the chain. An additional condition is needed if several chains have the same 

eigenvalue� in this case, we need to be able to independently excite the beginning of each of these 

chains. (Example 22.2 illustrates that reachability is lost otherwise� with just a single input, we are 

unable to excite the two identical chains independently.) With distinct eigenvalues, we do not need to 

impose this independence condition� the distinctness of the eigenvalues permits independent motions. 

Some additional insight is obtained by considering the distinct eigenvalue case in more detail. 

In this case, A in (22.1) is diagonalizable, and A � V �W , where the columns of V are the right 

eigenvectors of A and the rows of W are the left eigenvectors of A. For x(0) � 0 we have 

nX 

x(k) � v`w`
T Bg`(k) (22.18) 

`�1 

where 

k;1X 

g`(k) � �k;i;1 u(i) (22.19)` 

i�0 



If wj
T B � 0 for some j, then (22.18) shows that x(k) is con�ned to the span of fv`g`�6 j � i.e. the system 

is not reachable. For example, suppose we have a second-order system (n � 2), and suppose w1 

T B � 0. 

Then if x(0) � 0, the response to any input must lie along v2. This means that v2 

spans the reachable 

space, and that any state which has a component along v1 

is not reachable. 



Exercises 

Exercise 22.1 Suppose you are given the single-input, nth-order system x(k + 1) � Ax(k) + bu(k), 

and assume the control u at every time step is con�ned to lie in the interval [0� 1]. Assume also that an 

eigenvalue of A, say �1, is real and nonnegative. Show that the set of states reachable from the origin 

is con�ned to one side of a hyperplane through the origin in Rn . (Hint: An eigenvector associated 

with �1 

will help you make the argument.) 

[A hyperplane through the origin is an (n ; 1)-dimensional subspace de�ned as the set of vectors 

x in Rn for which a0x � 0, where a is some �xed nonzero vector in Rn . Evidently a is normal to the 

hyperplane. The two \sides" of the hyperplane, or the two \half-spaces" de�ned by it, are the sets of 

0 0x for which a x � 0 and a x � 0.] 

Exercise 22.2 Given the system ���� 

a b d 

x(k + 1) � x(k) + u(k)
0 c e 

where a� b� c� d� e are scalars, deduce precisely what condition these coe�cients satisfy when the 

system is not reachable. Draw a block diagram corresponding to the above system and use it to 

interpret the following special cases in which reachability is lost: (a) e � 0� (b) b � 0 and d � 0� (c) 

b � 0 and c � a. 

Exercise 22.3 (a) Given m-input system x(k + 1) � Ax(k) + Bu(k), where A is the Jordan-form 

matrix 0
 1


2 1 0 0 0
 

A �
 

BBB@


0 2 0 0 0
 

0 0 2 0 0
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0 0 0 3 1
 

0 0 0 0 3
 


 

obtain conditions that are necessary and su�cent for the system to be reachable. (Hint: Your 

conditions should involve the rows bi 

of B. Some form of the modal reachability test will | not 

surprisingly! | lead to the simplest solution.) 

(b) Generalize this reachability result to the case where A is a general n � n Jordan-form matrix. 

(c)	 Given the single-input, reachable system x(k + 1) � Ax(k) + bu(k), show that there can be only 

one Jordan block associated with each distinct eigenvalue of A. 

Exercise 22.4 Given the n-dimensional reachable system x(k + 1) � Ax(k) + Bu(k), suppose that 

u(k) is generated according to the nonlinear feedback scheme shown in the �gure, where u(k) � 

w(k) + f(x(k)), with f(:) being an arbitrary but known function, and w(k) being the new control 

input for the closed-loop system. 



Show that w(k) can always be chosen to take the system state from the origin to any speci�ed target 

state in no more than n steps. You will thereby have proved that reachability is preserved under (even 

nonlinear) state feedback. 

w + u	- l - System 

x 

6+ 

f(�) 

� 

xk+1 

� Axk 

+ B(wk 

+ f(xk)) 

Exercise 22.5 Consider the following linear SISO System, �: 

x(k + 1) � A(k)x(k) + B(k)u(k) 

y(k) � C(k)x(k) + D(k)u(k) 

where A(k) � A(k + N) 8k � 0, similarly for B(k)� C(k), and D(k). 

(a)	 Show that � is N -Periodic, i.e., for zero initial conditions, show that if y is the output response 

for some input u, then y(k ; N) is the output response for u(k ; N). Assume for simplicity that 

u(k) � 0 for k � 0. 

We want to get a di�erent representation of this system that is easier to work with. To achieve 

this, we will group together every N successive inputs starting from k � 0. We will also do the 

same for the output. To be more precise, we will de�ne a mapping L, called a lifting, such that 

L : (u(0)� u(1)� u(2)� : : : � u(k)� : : :) ! u~ 

where 00 1
 0
 1
 0
 1
 1
 u(0) u(N) u(kN) 

u~ � 

BB@ 

BB@ 

u(1) 

.
.


CCA


�
 

BB@


u(N + 1) 

.
 .
 

CCA


� : : : �
 

BB@


u(kN + 1) 

.
 .
 

CCA


CCA: : :
 


 
 

�
 :



 
 
 
 

.


u(N ; 1) 

.
 

u(2N ; 1) 

.


u((k + 1)N ; 1) 

Similarly, L : y ! y~. 

~(b)	 Show that the system mapping u~ to y~ is linear time invariant. We will denote this by �, the 

lifted system. What are the dimensions of the inputs and outputs. (In other words, by lifting 

the inputs and outputs, we got rid of the periodicity of the system and obtained a Multi-Input 

Multi-Output System). 



(c)	 Give a state-space description of the lifted system. (Hint: Choose as a state variable ~x(k) � x(kN), 

i.e., samples of the original state vector. Justify this choice). 

~(d)	 Show that the reachable subspace of the lifted system � is included in the reachable subspace of 

the periodic system �. Show that the converse is true if the periodic system is reachable in T 

steps with T � rN (a multiple of the period). 

~(e)	 Is it true that reachability of the periodic system � implies reachability of the lifted system �. 

Prove or show a counter example. 
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