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Chapter 21 

Robust Performance and 

Introduction to the Structured 

Singular Value Function 

21.1 Introduction 

As discussed in Lecture 20, a process is better described in terms of a set of plants centered around a 

nominal model. The robust stabilization problem is concerned with �nding non conservative conditions 

on the stable nominal closed loop system that guarantee the stability of all possible closed loop systems. 

An equally important problem is the robust performance problem which is concerned with �nding non 

conservative conditions on the nominal closed loop system that guarnatee that the performance is met 

for all possible closed loop systems. 

21.2 Robust Disturbance Rejection 

We will focus our discussion on one prototype problem, namely, the robust disturbance rejection 

problem shown in Figure 21.1. This motivates the following problem: 

Robust Disturbance Rejection Problem (RP) 

Find conditions on the nominal closed-loop system (Po�K) such that 

1. K robustly stabilizes all P 2 �, where � � fP j P � (I +�1W1)Po� k�k � 1g:1 

2. k(I + PK);1W2k1 

� 1 for all P 2 �. 

From Lecture 20, a performance objective in terms of the H1-norm of some closed loop map 

between some exogenous input w, to a regulated variable z, is mathematically equivalent to a robust 

stabilization problem with a perturbation block mapping the regulated output z to the exogenous input 

w. Obviously, the new perturbed system is stable if and only if kTzwk1 

� 1, which is the performance 
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Figure 21.1: Uncertain Plant with Disturbance 

objective. Notice that if the performance objective consists of several closed loop maps, then several 

perturbation blocks can be introduced in exactly the same fashion. 

Proceeding for RP, we can \wrap" a frequency-weighted perturbation from the output to the 

input of interest, which results in the model of Figure 21.2. Next, we can re-arrange the system into the 

- W1 

z1- �1 

w1 

w2 �2 

�z2 W2 

� 

� � 

m 

;6 

+m
 -
 -
P0 

m


6;


�
K 

Figure 21.2: Robust Performance Model 

m+ + 

M -� feedback form (a nominal stable M in feedback with the perturbation �) as in Figure 21.3. In 

this case, however, there are multiple inputs and outputs to consider. We use the following procedure 

to generate M and �: 

1. De�ne wi� zi 

to be the output and input, respectively, of the perturbation �i. 

2. For a total of m perturbations, compute the matrix transfer function M as the map from 

+m
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 -
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In other words, all the � blocks are removed, and the transfer functions \seen" by the blocks 

from each input wj 

to each output zi 

are calculated and used as the (i� j)th element of M . 

3. The perturbation matrix � will have the structure 32 

� �
 

64
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. .



 . 
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�m 

�
 k�ik1 

� 1: (21.2)


For a SISO system, each �i(j!) is a scalar, so that � becomes a diagonal matrix with complex 

entries. In the MIMO case, � is block-diagonal. 



Example 21.1 (Robust Disturbance Rejection) 

Applying the robust performance procedure to Figure 21.2 yields: 2	 3 ;W1(I + P0K);1P0K ;W1(I + P0K);1P0K 

M � 

4 5 : (21.3) 

W2(I + P0K);1 W2(I + P0K);1 

The transfer functions on the diagonal are identical to those in the single-block robust 

stability and disturbance-rejection problems, respectively, while the o�-diagonal terms 

account for the interaction between the two constraints. Having found the appropriate M 

and �, we have thereby reduced the robust performance problem to a stability problem 

for the system of Figure 21.3. 
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Figure 21.3: M -� Feedback Form 

A su�cient condition for robust stability is given by the small gain theorem, namely, 

�max[M(jw)]�max[�(jw)] � � � 1� for all w: 

Since � is norm bounded by one, this condition translates to kMk1 

� �. This condition, however, is 

far from necessary since � has a block diagonal structure. 

21.3 The Structured Singular Value 

For an unstructured perturbation, the supremum of the maximum singular value of M (i.e. kMk1) 

provides a clean and numerically tractable method for evaluating robust stability. Recall that, for the 

standard M -� loop, the system fails to be robustly stable if there exists an admissible � such that 

(I ; M�) is singular. What distinguishes the current situation from the unstructured case is that 

we have placed constraints on the set 

6 �. Given this more limited set of admissible perturbations, we 

desire a measure of robust stability similar to kMk1. This can be derived from the structured singular 

value �(M). 

De�nition 21.1 The structured singular value of a complex matrix M with respect to a class of 

perturbations 

6 � is given by 

4	 

1 

�(M) �	 � � 2 

6 �: (21.4)
inff�max(�) j det(I ; M�) � 0g 

If det(I ; M�) 6 6 �, then �(M) � 0. � 0 for all � 2 



Theorem 21.1 The M -� System is stable for all � 2 

6 � with k�k1 

� 1 if and only if 

sup �(M(j!)) � 1: 

! 

Proof: Immediate, from the de�nition. Clearly, if � � 1, then the norm of the smallest allowable 

destabilizing perturbation � must by de�nition be greater than 1. 

21.4 Properties of the Structured Singular Value 

It is important to note that � is a function that depends on the perturbation class 

6 � (sometimes, this 

function is denoted by � 6 � 

to indicate this dependence). The following are useful properties of such a 

fucntion. 

1.	 �(M) � 0. 

2. If	 

6 � � f�I j � 2 C g, then �(M) � �(M), the spectral radius of M (which is equal to the


magnitude of the eigenvalue of M with maximum magnitude).


3. If	 

6 � � f� j � is an arbitrary complex matrixg then � � �max(M), from which sup! 

� �


kMk1.


Property 2 shows that the spectral radius function is a particular � function with respect to 

a perturbation class consisting of matrices of the form of scaled identity. Property 3 shows that 

the maximum singular value function is a particular � function with respect to a perturbation class 

consisting of arbitrary norm bounded perturbations (no structural constraints). 

4. If 

6 � � fdiag(�1� : : : � �n) j �i 

complexg, then �(M) � �(D;1MD) for any D � diag(d1� : : : � dn)� jdij � 

0. The set of such scales is denoted D. 

This can be seen by noting that det(I ; AB) � det(I ; BA), so that det(I ; D;1MD�) � det(I ;
MD�D;1) � det(I ; M�). The last equality arises since the diagonal matrices � and D commute. 

5. If 

6 � � diag(�1� : : : � �n)� �i 

complex, then �(M) � �(M) � �max(M). 

This property follows from the following observation: If 

6 �1 

� 

6 �2, then �1 

� �2. It is clear that the 

class of perturbations consisting of scaled identity matrices is a subset of 

6 � which is a subset of the 

class of all unstructured perturbations. 

6. From 4 and 5 we have that �(M) � �(D;1MD) � infD2D 

�max(D
;1MD). 

21.5 Computation of � 

In general, there is no closed-form method for computing �. Upper and lower bounds may be computed 

and re�ned, however. In these notes we will only be concerned with computing the upper bound. If 

6 � � diag(�1� : : : � �n), then the upper bound on � is something that is easy to calculate. Furthermore, 

property 6 above suggests that by in�mizing �max(D
;1MD) over all possible diagonal scaling matrices, 

we obtain a better approximation of �. This turns out to be a convex optimization problem at each 



frequency, so that by in�mizing over D at each frequency, the tightest upper bound over the set of D 

may be found for �. 

We may then ask when (if ever) this bound is tight. In other words, when is it truly a least upper 

bound. The answer is that for three or fewer �'s, the bound is tight. The proof of this is involved, 

and is beyond the scope of this class. Unfortunately, for four or more perturbations, the bound is not 

tight, and there is no known method for computing � exactly for more than three perturbations. 

21.6 Robust Disturbance Rejection (SISO) 

As shown earlier, the disturbance rejection requirement could be converted to a robust stability problem 

with two blocks of uncertainty, as in Figure 21.2, where �1 

and �2 

are SISO stable systems. Hence 

6 � is the set of 2 � 2 diagonal complex matrices (which result from evaluating � at each frequency). 

Now, since this is a two-block problem, it should be possible to �nd � by in�mizing �max(D
;1MD). 

We have D � diag(d1� d2), so that 8 �������
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�(M(j!)) � inf 
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�max 

� (21.5)
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} 

d1 

W2 

P0 (j!) 

W2 (j!)d2 

1+P0 

K 1+P0 

K{z
A(�) 

ying the upper left diagonal, and the nominal

|
with the \pure" robust stability requirement 

performance requirement on the lower right. Setting � � d2�d1 

and �xing !, and taking the de�nition 

of A(�) from (21.5), we have 

�(M(j!)) � inf f�1�2 (A�(�)A(�))g: (21.6)max
j�j�0 

Now, for nominal performance, we require that 


 
 

occup 

����


����


W2 � 1:(j!) (21.7)
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For robust stability, we nee ����
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W1P0K � 1:(j!) (21.8)
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For robust performance, the necessary and su�cient condition is 

�(M(j!)) � 1: (21.9) 

A bit of algebra yields ����
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from which we have ����
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Figure 21.4: Robust Performance/Nyquist Criterion 

This minimum occurs at 

j�j2 � 

jW2P0j 

(21.13)jW1Kj 

which is not equal to 1 in general, so that sup! 

� � kMk1. In other words, � is a less conservative 

measure than k�k1 

in this case. 

Once again, there is a graphical interpretation of the SISO robust disturbance rejection problem, 

in terms of the Nyquist criterion. From (21.12), we have 

�(M(j!)) � 1 () 

����


W1P0K 

1 + P0K 

(j!) 

����


+
 

����


W2 

1 + P0K 

(j!) 

����


� 1: (21.14)



 
 
 
 

Letting L(j!) represent the nominal loop gain P0K(j!), this can be rewritten as: 

jW1L(j!)j + jW2j � j1 + L(j!)j: (21.15) 

Graphically, we can represent this at each frequency ! as a circle centered at ;1 of radius jW2j, and 

a second circle centered at L(j!) of radius jW1L(j!)j. Robust performance will be achieved as long 

as the two circles never intersect. 

Loop-shaping Revisited 

Loop-shaping is a well-established method of control design that concentrates on the frequency-domain 

characteristics of the open-loop transfer function L � P0K. Based primarily on design experience, 

there are certain characteristics of the loop transfer function that translate into desirable control 

performance. Other open-loop characteristics are known by experience to result in undesirable or 

unpredictable behavior. This method di�ers from �-synthesis and H1 

methods, which concentrate 

on optimizing the characteristics of the closed-loop transfer function. Since, presumably, a controller 

with good behavior designed by loop-shaping should be similar in some way to a controller designed 

by more recent methods, it is of interest to look for parallels in the heuristic rules of loop-shaping and 

the more methodical methods of �-synthesis and H1. 



Identifying the sensitivity and complementary sensitivity functions from (21.14), we can write 

the RP requirement as 

jW1(j!)T (j!)j + jW2(j!)S(j!)j � 1: (21.16) 

Model uncertainty typically increases with frequency, so it is important that the complementary sensi-
tivity function decreases with increasing frequency. For disturbance rejection, which is typically most 

critical over a low frequency range, we require that S(j!) remain small. The weighting functions W1 

and W2 

are designed to re�ect this, and so might take on the form of Figure 21.5. Normally, at low 

W W2 1 

Figure 21.5: Typical Weighting Functions 

frequency, L(j!) �� 1 and at high frequency, L(j!) �� 1. Now, 

L 1 

T0 

� � S0 

� (21.17)
1 + L 1 + L 

so that at low frequency, T0 

� 1 and S0 

� 1�L. Thus we can approximate the RP requirement at the 

low end as: 

jW1j +
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1
 

L


����

 
 

� 1 �) jLj � 

1


jW2j
; jW1j 

(21.18)


At high frequency, the approximation is T0 

� L and S0 

� 1, which leads to: 

jW1Lj + jW2j � 1� �) jLj � 

1 ; jW2j 

: (21.19)jW1j 

These constraints are summarized in Figure 21.6, which also notes another design rule, which is that 

the 0 dB crossing should occur at a slope no more negative than -40 dB per decade. If W1 

and W2 

do not overlap signi�cantly in frequency, then the upper and lower bounds reduce to jW2j and 1�jW1j, 

respectively. 

Example 21.2 (Loop Shaping) 

Assume P0 

is minimum phase stable with relative degree 1. Designing a controller by 

shaping the loop gain L � P0K is not a�ected by P0� just the relative degree is needed. 
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Figure 21.6: Typical Loop-shaping Problem 

Suppose the multiplicative uncertainty is described by 

s + 1 

W1 

� � 

20(0:01s + 1) 

i.e., the multiplicative perturbations of the plant are upper bounded by W1(j!) at each 

frequency. 

The objective is to track sinusoidal signals at the reference input in the frequency range 

[0� 1] rad�s. We would like to make the tracking error small� however, we do not know yet 

by how much. Let W2(j!) have the following frequency response � 

a 0 � ! � 1 jW2(j!)j � 

0 otherwise 

Note that this may not correspond to a stable W2(s)� however, this does not a�ect the 

resulting loop shape. We are going to exhibit the design by trial and error. Let 

b 

L(s) � : 

cs + 1 

At high frequency, ! � 20, 

1 ; jW2j 1 

L � � ! � 20: jW1j jW1j 

If we pick c � 1, then the largest value for b such that the above is satis�ed is b � 20. 

Hence 

20 

L(s) � : 

s + 1 

At low frequency, ! � 1, 

jLj � 

jW2j 

� 

a
: 

1 ; jW1j 1 ; jW1j 



Since jL(j!)j is decreasing and jW1(j!)j is increasing in the range [0� 1], the largest a can 

be solved for: 

a
jL(j1)j �
1 ; jW1(j1)j 

�


which implies that a � 13 :15. Checking the RP condition


jW2S(j!)j + jW1T (j!)j � 0:92 8! 

which implies RP is achieved and the tracking error is smaller than 1�13:15 in the range 

[0� 1]. If a better performance is desired, a possibly more complicated L needs to be used. 

The discussion in this chapter has focused on perturbations that are arbitrary dynamic systems. 

This alowed us to think of any class of structured perurbations as sets of arbitrary (structured) matrices 

at each frequency point. These matrices correspond to evaluating the dynamic system at a given 

frequency. 

In practical applications, some perturbations may be static and not dynamic. These arise in 

problems with real parameter uncertainties. We can still proceed as before and transform such problems 

to the general M -� diagram. In this case, � will have a combination of both static and dynamic 

perturbations. � for such a class can be de�ned as before, and it will provide a necessary and su�cient 

condition for robust stability. 

The main issue here is computing a good upper bound for �. Of course, we can always embed 

this class of perturbations in a larger class containing dynamic perturbations and use D-scaling to 

obtain an upper bound. This, however, gives conservative conditions. Computing non-conservative 

upper bounds of � for such perturbations remains an active area of research. 

21.7 Rank-One � 

Although we do not have methods for computing � exactly, there is one particular situation where this 

is possible. This situation occurs if M has rank 1, i.e. 

M � ab� 

where a� b 2 C 

n . Then it follows that � with respect to 

6 � containing complex diagonal perturbations 

is given by 

1 

� inf f�max(�) j det(I ; M�) � 0g: 

�(M) �26 � 

However, 

det(I ; M�) � det(I ; ab��) 

0 BBB@ 

det(I ; b��a)�
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� det I ; [�1 
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and �max(�) � maxi 

j�ij. Hence, 
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Optimizing the RHS, it follows that (verify) 
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Notice that the SISO robust disturbance rejection problem is a rank-one problem. This follows since 2
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P0 

]: 

1 + P0K 1 + P0KW2 
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W1P0K 

1 + P0K 

(j!) 
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+
 

����


W2 

1 + P0K 

(j!) 

����


�(M(j!)) � 


 
 
 
 

which is the condition we derived before. 

Coprime Factor Perturbations 

Consider the class of SISO systems ����


�
 �
 

N(s) 

2W2� k�ik � 1� �
 N � N0 

+�1W1� D � D0 

+� 

D(s) 


 

where the nominal plant is N0�D0 

with the property that both N0 

and D0 

are stable with no common 

zeros in the RHP. Assume that K stabilizes N0�D0. This block diagram is shown in Figure 21.7. 
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Figure 21.7: Coprime Factor Perturbation Model 
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The closed loop block diagram can be mapped to the M -� diagram where 2
 3
5
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W1 

K ; 

W1 
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D0 
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+N0 

K 4
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2
 4
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W1 
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W2 
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W2 
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+N0 

K 3
 5 [1
 1]: 

Hence, M has rank 1 and 

�(M(j!)) � 

����


W1K 

D0 

+ N0K 

����


+
 

����


����


W2 

D0 

+ N0K 

:
 


 
 
 
 

Robust Hurwitz Stability of Polynomials with Complex Perturbations 

Another application of the structured singular value with rank one matrices is the robust stabil-�ity of a family of polynomials with complex perturbations of the coe�cients. In this case let � ��T 

�n;1 

�n;2 

: : : �0 

and consider the polynomial family 

P (s� �) � s 

n + (an;1 

+ �n;1�n;1)s 

n;1 + : : : + (a0 

+ �0�0)� 

where ai, �i, and �i 

2 C and j�ij � 1. We want to obtain a condition that is both necessary and 

su�cient for the Hurwitz stability of the entire family of polynomials P (s� �). We can write the 

polynomials in this family as 

; 

P (s� 0) + P~(s� �)P (s� �) � 

�


(21.20)
�
 �
;


�n;1�n;1s 

n;1 + : : :


n;1n + �0�0 

� (21.21)+ an;1s + : : : + a0 

+s 

which can also be rewritten as 2
 32 

�n;1 

0 0 : : : 0 �n;1s
n;1 

3
666664


0 �n;2 

0 : : : 0 

. . .
 . . .
 . 

. .
 

�1 

0 

666664 

777775 

�n;2s
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.
 .
 .
 

�1s 

777775


�� 

P (s� �) � P (s� 0) + 
1 1 : : : 1 :



 
 

0 0 : : : 0 �0 

�0 

We assume that the center polynomial P (s� 0) is Hurwitz stable. This implies that the stability of the 

entire family P (s� �) is equivalent to the condition that 

1


�� 

1 + 
1 1 : : : 1
 

P (j!� 0) 

2666664
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�n;1 

0 0 : : : 0 �n;1(j! )n;1 
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�1 

0 
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�1(j!) 

777775


6� 0 
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1 

for all ! 2 R and j�ij � 1. This is equivalent to the condition that 

�n;1(j! )n;1
3
2
0 CCCCCA

entire family 

�(M(j!)) � 1


for all ! 2 R, where 

BBBBB@
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 . . 

�1(j!) 

�0 

� 

777775 

1 1 : : : 1 :
 

�n;2(j! )n;2 

�
 � 0 

for all ! 2 R and � 2 

6 � with k�k1 

� 1. Now using the concept of the structured singular value we 

arrive at the following condition which is both necessary and su�cient for the Hurwitz stability of the 

1
 .
I +
 
1 1 : : : 1


. .P (j!� 0) 

�1(j!)
 
 
 

�0 

�n;1(j! )n;1 

�n;2(j! )n;2 �
1


M(j!) � 

P (j!� 0) 

Clearly this is a rank one matrix and by our previous discussion the structured singular value can be 

computed analytically resulting in the following test 

Xn 

jP (j!� 0)j 

i�1 

for all ! 2 R. 

1
 j�n;ijj!jn;i � 1




Exercises 

Exercise 21.1 In decentralized control, the plant is assumed to be diagonal and controllers are de-
signed independently for each diagonal element. If however, the real process is not completely decou-
pled, the interactions between these separate subsystems can drive the system to instability. 

Consider the 2 � 2 plant � � 

P11 

P12P (s) � : 

P21 

P22 

Assume that P12 

and P21 

are stable and relatively small in comparison to the diagonal elements, and 

only a bound on their frequency response is available. Suppose a controller K � diag(K1�K2) is 

designed to stabilize the system P0 

� diag(P11� P22). 

1. Set-up the problem as a stability robustness problem, i.e., put the problem in the M ; � form. 

2. Derive a non-conservative condition (necessary and su�cient) that guarantees the stability ro-
bustness of the above system. Assume the o�-diagonal elements are perturbed independently. 

Reduce the result to the simplest form (an answer like �(M) � 1 is not acceptable� this problem 

has an exact solution which is computable). 

3. How does your answer change if the o�-diagonal elements are perturbed simultaneously with the 

same �. 

Exercise 21.2 Consider the rank 1 � problem. Suppose 

6 �, contains only real perturbations. Com-
pute the exact expression of �(M). 

Exercise 21.3 Consider the set of plants characterized by the following sets of numerators and de-
nominators of the transfer function: 

N(s) � N0(s) + N�(s)�� D(s) � D0(s) + D�(s)� 

Where both N0 

and D0 

are polynomials in s, � 2 R
n, and N�� D� 

are polynomial row vectors. The 

set of all plants is then given by: 

N(s)
� � f 

D(s) 

j � 2 R
n� j�ij � �g 

Let K be a con troller that stabilizes 

N0 . Compute the exact stability margin� i.e., compute the largest D0 

� such that the system is stable. 
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