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Chapter 17 

Interconnected Systems and 

Feedback: Well-Posedness, 

Stability, and Performance 

17.1 Introduction 

Feedback control is a powerful approach to obtaining systems that are stable and that meet 

performance speci�cations, despite system disturbances and model uncertainties. To under-
stand the fundamentals of feedback design, we will study system interconnections and some 

associated notions such as well-posedness and external stability. Unless otherwise noted, our 

standing assumption for the rest of the course | and a natural assumption in the control 

setting | will be that all our models for physical systems have outputs that depend causally 

on their inputs. 

17.2 System Interconnections 

Interconnections are very common in control systems. The system or process that is to be 

controlled | commonly referred to as the plant | may itself be the result of interconnecting 

various sorts of subsystems in series, in parallel, and in feedback. In addition, the plant is 

interfaced with sensors, actuators and the control system. Our model for the overall system 

represents all of these components in some idealized or nominal form, and will also include 

components introduced to represent uncertainties in, or neglected aspects of the nominal 

description. 

We will start with the simplest feedback inteconnection of a plant with a controller, 

where the outputs from the plant are fed into a controller whose own outputs are in turn fed 



back as inputs to the plant. A diagram of this prototype feedback control con�guration is 

shown in Figure 17.1. 
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Figure 17.1: Block diagram of the prototype feedback control con�guration. 

The plant P and controller K could in general be nonlinear, time-varying, and in�nite-
dimensional, but we shall restrict attention almost entirely to interconnections of �nite-

order LTI components, whether described in state-space form or simply via their input-
output transfer functions. Recall that the transfer functions of such �nite-order state-space 

models are proper rationals, and are in fact strictly proper if there is no direct feedthrough 

from input to output. We shall use the notation of CT systems in the development that 

follows, although everything applies equally to DT systems. 

The plant and controller should evidently have compatible input/output dimensions� if 

not, then they cannot be tied together in a feedback loop. For example, if P (s) is the p � m 

transfer function matrix of the (nominal LTI model of the) plant in Figure 17.1, then the 

transfer function K(s) of the (LTI) controller should be an m � p matrix. 

All sorts of other feedback con�gurations exist� two alternatives can be found in Fig-
ures 17.2 and 17.3. For our purposes in this chapter, the di�erences among these various 

con�gurations are not important. 
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Figure 17.2: A (\servo") feedback con�guration where the tracking error between the com-
mand r and output y is directly applied to the controller. 

Our discussion for now will focus on the arrangement shown in Figure 17.4, which is an 

elaboration of Figure 17.1 that represents some additional signals of interest. Interpretations 

for the various (vector) signals depicted in the preceding �gures are normally as follows: 

�	 u | control inputs to plant 
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Figure 17.3: A two-parameter-compensator feedback scheme. 
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Figure 17.4: Including plant disturbances d and measurement noise n. 

� y | measured outputs of plant 

� d | plant disturbances, represented as acting at the output 

� n | noise in the output measurements used by the feedback controller 

� r | reference or command inputs 

� e | tracking error r ; y. 

� f | output of feedback compensator 

Transfer Functions 

We now show how to obtain the transfer functions of the mappings relating the various signals 

found in Figure 17.4� the transform argument, s, is omitted for notational simplicity. We also 

depart temporarily from our convention of denoting transforms by capitals, and mark the 

transforms of all signals by lower case, saving upper case for transfer function matrices (i.e. 

transforms of impulse responses)� this distinction will help the eye make its way through the 

expressions below, and should cause no confusion if it is kept in mind that all quantities below 

are transforms. To begin by relating the plant output to the various input signals, we can 



write 

y � Pu + d 

� P [r + K(y + n)] + d 

(I ; PK)y � Pr + PKn + d 

y � (I ; PK);1Pr + (I ; PK);1PKn + (I ; PK);1d 

Similarly, the control input to the plant can be written as 

u � r + K(y + n) 

� r + K(Pu + d + n) 

(I ; KP )u � r + Kn + Kd 

u � (I ; KP );1 r + (I ; KP );1Kn + (I ; KP );1Kd 

The map u ;! f (with the feedback loop open and r � 0, n � 0, d � 0) is given by 

L � KP , and is called the loop transfer function. 

The map d ;! y (with n � 0, r � 0) is given by So 

� (I ; PK);1 and is called the 

output sensitivity function. 

The map n ;! y (with d � 0, r � 0) is given by T � (I ; PK);1PK and is called the 

complementary sensitivity function. 

The map r ;! u (with d � 0, n � 0) is given by Si 

� (I ; KP );1 and is called the 

input sensitivity function. 

The map r ;! y (d � 0, n � 0) is given by (I ; PK);1P is called the system response 

function . 

The map d ;! u (with n � 0, r � 0) is given by (I ; KP );1K. 

Note that the transfer function (I ; KP );1K can also be written as K(I ; PK);1 , as 

may be proved by rearranging the following identity: 

(I ; KP )K � K(I ; PK) � 

Similarly the transfer function (I ; PK);1P can be written as P (I ; KP );1 . 

Note also that the output sensitivity and input sensitivity functions are di�erent, because, 

except for the case when P and K are both single-input, single-output (SISO), we have 

(I ; KP );1 6 :� (I ; PK);1



17.3 Well-Posedness 

We will restrict attention to the feedback structure in Figure 17.5. Our assumption is that 

H1 

and H2 

have some underlying state-space descriptions with inputs u1, u2 

and outputs y1, 

y2, so their transfer functions H1(s) and H2(s) are proper, i.e. H1(1), H2(1) are �nite. It 

is possible (and in fact typical for models of physical systems, since their response falls o� to 

zero as one goes higher in frequency) that the transfer function is in fact strictly proper. 
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Figure 17.5: Feedback Interconnection. 

The closed-loop system in Figure 17.5 can now be described in state-space form by 

writing down state-space descriptions for H1(s) (with input u1 

and output y1) and H2(s) (with 

input u2 

and output y2), and combining them according to the interconnection constraints 

represented in Figure 17.5. Suppose our state-space models for H1 

and H2 

are " # " # 

A1 

B1 

A2 

B2H1 

� � H2 

� 

C1 

D1 

C2 

D2 

with respective state vectors, inputs, and outputs (x1� u1� y1) and (x2� u2� y2), so 

x_ 1 

� A1x1 

+ B1u1 

y1 

� C1x1 

+ D1u1 

x_ 2 

� A2x2 

+ B2u2 

y2 

� C2x2 

+ D2u2 

: (17.1) 

Note that D1 

� H1(1) and D2 

� H2(1). The interconnection constraints are embodied in 

the following set of equations: 

u1 

� r1 

+ y2 

� r1 

+ C2x2 

+ D2u2 

u2 

� r2 

+ y1 

� r2 

+ C1x1 

+ D1u1� 

which can be rewritten compactly as " # " # " # " # " # " # 

;
I
D1 

;
I
D2 

u
u
1

2 

� 

C
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1 

C
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2 

x
x
1
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+ 

I 

0 I 

0 r
r
1

2 

: (17.2) 



We shall label the interconnected system well-posed if the internal signals of the feed-
back loop, namely u1 

and u2, are uniquely de�ned for every choice of the system state variables 

x1, x2 

and external inputs r1, r2. (Note that the other internal signals, y1 

and y2, will be 

uniquely de�ned under these conditions if and only if u1 

and u2 

are, so we just focus on the 

latter pair.) It is evident from (17.2) that the condition for this is the invertibility of the 

matrix " # 

I 

;D1 

;D2 

I 

: (17.3) 

This matrix is invertible if and only if 

I ; D1D2 

or equivalently I ; D2D1 

is invertible. (17.4) 

This result follows from the fact that if X, Y , W , and Z are matrices of compatible dimensions, 

and X is invertible then " # 

det 

X Y 

� det(X) det(W ; ZX;1Y ) (17.5)
Z W 

A su�cient condition for (17.4) to hold is that either H1 

or H2 

(or both) be strictly proper� 

that is, either D1 

� 0 or D2 

� 0. 

The signi�cance of well-posedness is that once we have solved (17.2) to determine u1 

and u2 

in terms of x1, x2, r1 

and r2, we can eliminate u1 

and u2 

from (17.1) and arrive at a 

state-space description of the closed-loop system, with state vector � ! 

x1 x � 

x2 

We leave you to write down this description explicitly. Without well-posedness, u1 

and u2 

would not be well-de�ned for arbitrary x1, x2, r1 

and r2, which would in turn mean that there 

could not be a well-de�ned state-space representation of the closed-loop system. 

The condition in (17.4) is equivalent to requiring that � �;1 

� �;1 

I ; H1(s)H2(s) or equivalently I ; H2(s)H1(s) exists and is proper. (17.6) 

Example 17.1 Consider a discrete-time system with H1(z) � 1 and H2(z) � 1 ; 

z;1 in (the DT version of) Figure 17.5. In this case (1;H1(1)H2(1)) � 1;1 � 0, 

and thus the system is ill-posed. Note that the transfer function from r1 

to y1 

for this system is 

(1 ; H1H2)
;1H1 

� (1 ; 1 + z;1);1 � z 

which is not proper | it actually corresponds to the noncausal input-output re-
lation 

y1(k) � r1(k + 1) � 

which cannot be modeled by a state-space description. 



Example 17.2 Again consider Figure 17.4, with H1(s) � 

s+1 s+2and H2(s) � s+1 

. s+2 

The expression (1 ; H1(1)H2(1)) � 0, which implies that the interconnection is 

ill-posed. In this case notice that, 

(1 ; H1(s)H2(s))	 � 1 ; 1 

� 0 8 s 2 C ! 

Since the inverse of (1 ; H1H2) does not exist, the transfer functions relating 

external signals to internal signals cannot be written down. 

17.4 External Stability 

The inputs in Figure 17.5 are related to the signals y1, and y2 

as follows: 

y1 

� H1(y2 

+ r1) 

y2 

� H2(y1 

+ r2)� 

which can be written as " # " # " # " # 

I ;H1 

y1 � 

H1 

0 r1	 (17.7);H2 

I y2 

0 H2 

r2 

We assume that the interconnection in Figure 17.5 is well-posed. Let the map T (H1�H2) be 

de�ned as follows: � ! � ! 

y1 

r1� T (H1�H2) : 

y2	 

r2 

From the relations 17.7 the form of the map T (H1�H2) is given by "	 # 

(I ; H1H2)
;1H1 

(I ; H1H2)
;1H1H2T (H1�H2) � 

(I ; H2H1)
;1H2H1 

(I ; H2H1)
;1H2 

We term the interconnected system externally p-stable if the map T (H1�H2) is p-
stable. In our �nite-order LTI case, what this requires is precisely that the poles of all the 

entries of the rational matrix "	 # 

(I ; H1H2)
;1H1 

(I ; H1H2)
;1H1H2T (H1�H2) � 

(I ; H2H1)
;1H2H1 

(I ; H2H1)
;1H2 

be in the open left half of the complex plane. 

External stability guarantees that bounded inputs r1, and r2 

will produce bounded re-
sponses y1, y2, u1, and u2. External stability is guaranteed by asymptotic stability (or inter-
nal stability) of the state-space description obtained through the process described in our 

discussion of well-posedness. However, as noted in earlier chapters, it is possible to have exter-
nal stability of the interconnection without asymptotic stability of the state-space description 



(because of hidden unstable modes in the system | an issue that will be discussed much more 

in later chapters). On the other hand, external stability is stronger than input/output stabil-
ity of the mapping (I ; H1H2)

;1H1 

between r1 

and y1, because this mapping only involves a 

subset of the exposed or external variables of the interconnection. 

Example 17.3 Assume we have the con�guration in Figure 17.5, with H1 

� 

s;1 

s+1 

and H2 

� ;s;
1
1 

. The transfer function relating r1 

to y1 

is � � 

H1 

s ; 1 1 

;1 

� 1 + 

1 ; H1H2 

s + 1 s + 1 � �� � 

s ; 1 s + 1 

� 

s + 1 s + 2 

s ; 1 

� : 

s + 2 

Since the only pole of this transfer function is at s � ;2, the input/output relation 

between r1 

and y1 

is stable. However, consider the transfer function from r2 

to 

u1, which is � ! 

H2 

1 1 

� 

1 ; H1H2 

s ; 1 1 + 

1 

s+1 

s + 1 

� : 

(s ; 1)(s + 2) 

This transfer function is unstable, which implies that the closed-loop system is 

externally unstable. 

17.5 A More General Description 

There are at least two reasons for going to a more general system description than those shown 

up to now. First, our assessment of the performance of the system may involve variables that 

are not among the measured/fed-back output signals of the plant. Second, the disturbances 

a�ecting the system may enter in more general ways than indicated previously. We do still 

want our system representation to separate out the controller portions of the system (the 

K's or K1, K2 

of the earlier �gures), as these are the portions that we will be designing. In 

this section we will introduce a general plant description that organizes the di�erent types of 

inputs and outputs, and their interaction with a controller. A block diagram for a general 

plant description is shown in Figure 17.6. 

The di�erent signals in Figure 17.6 can be classi�ed as follows. 

� Inputs: 

1. Control input vector u, which contains the actuator signals driving the plant and 

generated by a controller. 
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Figure 17.6: General plant description. 

2. Exogeneous input vector w, which contains all other external signals, such as ref-
erences and disturbances. 

�	 Outputs: 

1. Measured output	 vector y, which contains the signals that are available to the 

controller. These are based on the outputs of the sensor devices, and form the 

input to the controller. 

2. Regulated output vector	 z, which contains the signals that are important for the 

speci�c application. The regulated outputs usually include the actuator signals, 

the tracking error signals, and the state variables that must be manipulated. 

Let the transfer function matrix " # 

Gzw 

Gzu G �	 � 

Gyw 

Gyu 

have the state-space realization 

x_ � Ax + B1w + B2u 

z � C1x + D11w + D12u 

y � C2x + D21w + D22u 

Example 17.4 Consider the unity feedback system in Figure 17.7, where P is a 

SISO plant, K is a scalar controller, y0 is the output, u is the control input, v is 

a reference signal, and d is an external disturbance that is \shaped" by the �lter 

H before it is injected into the measured output. The controller is driven by the 

di�erence e � v ; y0 (the \tracking error"). The signals v and d can be taken to 

constitute the exogeneous input, so " # 

v 

w � : 

d 

In such a con�guration we typically want to keep the tracking error e small, and 

to put a cost on the control action. We can therefore take the regulated output z 

to be " # 

e 

z � : 

u 
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Figure 17.7: Example of a unity feedback system. 

The input to the controller is e, therefore we set the measured output y to be 

equal to e. With these choices, the generalized plant transfer function G, which 

relates z and y to w and u, can be obtained from " # " # " # 

;Pu ; Hd + v ;P 1 ;H 

z � � u + w 

u 1 0 0 h i 

y � ;Pu + 1 ;H w: 

1 1Let us suppose that P � s;1 

and H � s+1 

. Then a state-space realization of G 

is easily obtained: " # " # " # " # " # 

d x1 

1 0 x1 

0 0 1 

� + w + u 

dt 

x2 

0 ;1 x2 

0 1 0 " # " # " # " # 

;1 ;1 x1 

1 0 0 

z � + w + u 

0 0 x2 

0 0 1 " # h i h i x1 y � ;1 ;1 + 1 0 w + 0u : 

x2 

If we close the loop, the general plant/controller structure takes the form shown in 

Figure 17.8. 

The plant transfer matrix G is a 2 � 2 block matrix mapping the inputs w� u to the 

outputs z� y, where the part of the plant that interacts directly with the controller is just 

Gyu. The map (or transfer function) of interest in performance speci�cations is the map from 

w to z, denoted by �, and easily seen to be given by the following expression: 

� � Gzw 

+ Gzu(I ; KGyu)
;1KGyw 

(17.8) 
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Figure 17.8: A general feedback con�guration. 

In this new settup we would like to determine under what conditions the closed-loop 

system in Figure 17.9 is well-posed and externally stable. For these purposes we inject 

signals r and v as shown in Figure 17.9, which is similar to what we did in the previous 

sections. Note that by de�ning the signals � ! � ! 

w 0 

r1 

� r2 

� 

r v � ! � ! 

z 0 

y1 

� y2 

� 

y f 

this structure is equivalent to the structure in Figure 17.5. This is illustrated in Figure 17.10, 

with " # 

H1 

� 

Gzw 

Gyw 

Gzu 

Gyu 

H2 

� 

" 

0 

I 

# h
 

K 0 I 

" i
 

� 

0 

0 

0 

K 

# 

This interconnection is well-posed if and only if � �	 !� !!
 

Gzw(1) Gzu(1) 0 0 

I ; 

Gyw(1) Gyu(1) 0 K(1) 

is invertible. This is the same as requiring that 

(I ; K(s)Gyu(s))
;1 or equivalently (I ; Gyu(s)K(s));1 exists and is proper 

The inputs in Figure 17.9 are related to the signals z, u and y as follows: 2	 32 3 2 32 3 

I ;Gzu 

0 z Gzw 

0 0 w 6	 76 7 6 76 7 4
	

0 I ;K
 54 

u 5
 

�
 4
 

0 I K 54 

r 5
 

(17.9) 
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Figure 17.9: A more general feedback con�guration. 

Let the map T (P� K) be de�ned as follows: 1010 

z w B@


u 

CA


r 

CA

 
 

� T (P� K)
 

B@

 
 

y v 

The interconnected system is externally p-stable if the map from r1� r2 

to y1� y2 

is p-stable, 

see Figure 17.10. This is equivalent to requiring that the map T (P� K) is p-stable. 

17.6 Obtaining Stability and Performance: A Preview 

In the lectures ahead we will be concerned with developing analysis and synthesis tools for 

studying stability and performance in the presence of plant uncertainty and system distur-
bances. 

Stabilization 

Stabilization is the �rst requirement in control design | without stability, one has nothing! 

There are two relevant notions of stability: 

(a) nominal stability (stability in the absence of modeling errors), and 

(b) robust stability (stability in the presence of some modeling errors). 

In the previous sections, we have shown that stability analysis of an interconnected feedback 

system requires checking the stability of the closed-loop operator, T (P� K). In the case where 
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Figure 17.10: A more general feedback con�guration. 

modeling errors are present, such a check has to be done for every possible perturbation of the 

system. E�cient methods for performing this check for speci�ed classes of modeling errors 

are necessary. 

Meeting Performance Speci�cations 

Performance speci�cations (once stability has been ensured) include disturbance rejection, 

command following (i.e., tracking), and noise rejection. Again, we consider two notions of 

performance: 

(a) nominal performance (performance in the absence of modeling errors), and 

(b) robust performance (performance in the presence of modeling errors). 

Many of the performance speci�cations that one may want to impose on a feedback 

system can be classi�ed under the following two types of speci�cations: 

1. Disturbance Rejection. This corresponds to minimizing the e�ect of the exogenous 

inputs w on the regulated variables z in the general 2-input 2-output description, when the 

exogenous inputs are only partially known. To address this problem, it is necessary to provide 

a model for the exogenous variables. One possibility is to assume that w has �nite energy but 

is otherwise unknown. If we desire to minimize the energy in the z produced by this w, we 

can pose the performance task as involving the minimization of 

k�wk2 

sup 

w 6 kwk2�0 

where � is the map relating w to z. This is just the square root of the energy-energy gain, 

and is measured by the H1-norm of �. 



Alternatively, if w is assumed to have �nite peak magnitude, and we are interesed in the 

peak magnitude of the regulated output z, then the measure of performance is given by the 

peak-peak gain of the system, which is measured by the ` 1�L1-norm of �. Other alternatives 

such as power-power ampli�cation can be considered. 

A rather di�erent approach, and one that is quite powerful in the linear setting, is to 

model w as a stochastic process (e.g, white noise process). By measuring the variance of z, 

we obtain a peformance measure on �. 

2. Fixed-Input Speci�cations. These speci�cations are based on a speci�c command or 

nominal trajectory. One can, for instance, specify a template in the time-domain within which 

the output is required to remain for a given class of inputs. Familiar speci�cations such as 

overshoot, undershoot, and settling time for a step input fall in this category. 

Finally, conditions for checking whether a system meets a given performance measure in 

the presence of prescribed modeling errors have to be developed. These topics will be revisited 

later on in this course. 



Exercises 

Exercise 17.1 Let P (s) � e;2s ; 1 be connected in a unity feedback con�guration. Is this system 

well-posed� 

Exercise 17.2 Assume that P� 

and K in the diagram are given by: � s ;� 

� � s+1 0 

� 

s+1 s+1 

s(s+5)P�(s) � 1 1 

� � 2 R� K(s) � s+1 s+1 

: 

(s+1) s+1 

; s(s+5) s+5 

u yw1 - m - P� 

-
+ 6 ; 

+� w2� m� 

K + 

1. Is the closed loop system stable for all � � 0� 

2. Is the closed loop system stable for � � 0� 

Exercise 17.3 Consider the standard servo loop, with 

1 

P (s) � � K(s) � k 

10s + 1 

but with no measurement noise. Find the least positive gain such that the following are all true: 

�	 The feedback system is internally stable. 

�	 With no disturbance at the plant output (d(t) � 0), and with a unit step on the command signal 

r(t), the error e(t) � r(t) ; y(t) settles to je(1)j � 0:1. 

� Show that the L2 

to L1 

induced norm of a SISO system is given by H2 

norm of the system. 

� With zero command (r(t) � 0), kyk1 

� 0:1 for all d(t) such kdk2 

� 1. [ADD NEW Problem] 

Exercise 17.4 Parametrization of Stabilizing Controllers 

Consider the diagram shown below where P is a given stable plant. We will show a simple way 

of parametrizing all stabilizing controllers for this plant. The plant as well as the controllers are �nite 

dimensional. 



- - - -

- -

w1 - m 

u	 - P	 

y -
+ 6 ; 

�+
� m� 

w2 

K	 + 

1. Show that the feedback controller 

K � Q(I ; PQ);1 � (I ; QP );1Q


for any stable rational Q is a stabilizing controller for the closed loop system.


2. Show that every stabilizing controller is given by K � Q(I ; PQ);1 for some stable Q. (Hint: 

Express Q in terms of P and K). 

3. Suppose P is SISO, w1 

is a step, and w2 

� 0. What conditions does Q have to satisfy for the 

steady state value of u to be zero. Is it always possible to satisfy this condition� 

Exercise 17.5 Consider the block diagram shown in the �gure below. 

�� 

r y 

�� 

Q(s) P (s) 

6; 

�����+
P0(s) 

;
����

2 1 

(a) Suppose P (s) � , P0(s) � and Q � 2. Calculate the transfer function from r to y. 

s ; 1 s ; 1 

(b) Is the above system internally stable� 

(c)	 Now suppose that P (s) � P0(s) � H(s) for some H(s). Under what conditions on H(s) is the 

system internally stable for any stable (but otherwise arbitrary) Q(s)� 



Exercise 17.6 Consider the system shown in the �gure below. 

�� 

r - - -
y
-�� 

K(s) P (s) 

6; 

The plant transfer function is known to be given by: 32 6
P ( ) � 4s 

s ; 1 

1 

s + 1 


 s + 1 

75

 

0 

s + 2 

A control engineer designed the controller K(s) such that the closed-loop transfer function from r to 

y is: 32 64


1 

0 

s + 4 


 1 

75


H(s) �

 

0 

s + 4 

(a) Compute K(s). 

(b) Compute the poles and zeros (with associated input zero directions) of P (s) and K(s). 

(c) Are there pole/zero cancellations between P (s) and K(s) � 

(d) Is the system internally stable� Verify your answer. 

Exercise 17.7 An engineer wanted to estimate the peak-to-peak gain of a closed loop system h (the 

input-output map). The controller was designed so that the system tracks a step input in the steady 

state. The designer simulated the step response of the system and computed the amount of overshoot 

(e1) and undershoot (e2) of the response. He/She immediately concluded that 

khk1 

� 1 + 2e1 

+ 2e2: 

Is this a correct conclusion� Verify. 



MIT OpenCourseWare
http://ocw.mit.edu 

6.241J / 16.338J Dynamic Systems and Control 
Spring 2011 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms



