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Chapter 15 

External Input-Output Stability
 

15.1 Introduction 

In this lecture, we introduce the notion of external, or input-output, stability for systems. 

There are many connections between this notion of stability and that of Lyapunov stability 

which we discussed in the previous two chapters. We will only make the connection in the LTI 

case. In addition, we will point out the fact that the notion of input-output stability depends 

in a non-trivial fashion on the way we measure the inputs and the outputs. 

15.2 Signal Measures 

The signals of interest to us are de�ned as maps from a time set into R
n . A continuous-time 

signal is a map from R ! R
n, and a discrete-time signal is a map from Z ! R

n . If n � 1 we 

have a scalar signal, otherwise we have a vector-valued signal. It is helpful, in understanding 

the various signal measures de�ned below, to visualize a discrete-time signal w(k) as just 

a vector of in�nite (or, if our signal is de�ned only for non-negative time, then a vector of 

semi-in�nite) length or dimension, concretely representing it as the array 0
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Three of the most commonly used DT signal measures are then natural generalizations of 

the �nite-dimensional vector norms (1-, 2- and 1-norms) that we have already encountered 

in earlier chapters, generalized to such in�nite-dimensional vectors. We shall examine these 

three measures, and a fourth that is related to the 2-norm, but is not quite a norm. We shall 

also de�ne CT signal measures that are natural counterparts of the DT measures. 



The signal measures that we study below are: 

1. peak magnitude (or 1-norm)� 

2. energy (whose square root is the 2-norm)� 

3. power (or mean energy, whose square root is the \rms" or root-mean-square value)� 

4. \action" (or 1-norm). 

Peak Magnitude: The 1-Norm 

The 1-norm kwk1 

of a signal is its peak magnitude, evaluated over all signal components 

and all times : 

4 kwk1 

� max magnitude of w 

4 

� sup max jwi(k)j � sup kw(k)k1 

(for DT systems) (15.2) 

k i k 

4 

� sup max jwi(t)j � sup kw(t)k1 

(for CT systems) � (15.3) 

t i t 

where wi(k) indicates the i-th component of the signal vector w(k). Note that kw(k)k1 

denotes the 1-norm of the signal value at time k, i.e. the familiar 1 norm of an n-vector, 

namely the maximum magnitude among its components. On the other hand, the notation 

kwk1 

denotes the 1-norm of the entire signal. The \sup" denotes the supremum or least 

upper bound, the value that is approached arbitrarily closely but never (i.e., at any �nite 

time) exceeded. We use \sup" instead of \max" because over an in�nite time set the signal 

magnitude may not have a maximum, i.e. a peak value that is actually attained | consider, 

for instance, the simple case of the signal 

1 

1 ; 

1 + jkj 

� 

which does not attain its supremum value of 1 for any �nite k. 

Note that the DT de�nition is the natural generalization of the standard 1-norm for 

�nite-dimensional vectors to the case of our in�nite vector in (15.1), while the CT de�nition is 

the natural counterpart of the DT de�nition. This pattern is typical for all the signal norms 

we deal with, and we shall not comment on it explicitly again. 

Example 15.1 Some bounded signals: 

(a) For w(t) � 1, t 2 R� t � 0:
 

kwk1 

� 1.
 

(b) For w(t) � at� t 2 Z:
 

kwk1 

� 1 if jaj 6� 1 and kwk1 

� 1 otherwise.
 



The space of all signals with �nite 1-norm are generally denoted by ` 1 

and L1 

for DT and CT signals respectively. For vector-valued signals, the size of the 

vector may be explicitly added to the symbol, e.g., `n These form normed-vector 1.


spaces.


Energy and the 2-Norm 

The 2-norm of a signal is the square root of its \energy", which is in turn de�ned as the sum 

(in DT) or integral (in CT) of the squares of all components over the entire time set: 

4 kwk2 

� square-root of energy in w " # 1 " # 1 

k � 1 �Z 

� 1 

2 24 

X 

T 

X 

� w (k)w(k) � kw(k)k22 

(for DT systems) (15.4) 

k �Z 

4 

2 2 

� w 

T (t)w(t) dt � kw(t)k22 

dt (for CT systems) : (15.5) 

t 

Example 15.2 Some examples: 

(a) For w(t) � e;at and time set t � 0, with a � 0:
 

kwk2 

� 

p1 � 1
 

2a 

(b) For w(t) � 1 and time set t � 0:
 

kwk2 

� 1
 

(c) For w(t) � cos !ot and time set t � 0:
 

kwk2 

� 1.
 

These examples suggest that bounded-energy signals go to zero as time progresses. For 

discrete-time signals, this expectation holds up: if kwk2 

� 1, then kw(k)k ;! 0 as k ;! 1. 

However, for continuous-time signals, the property of having bounded energy does not imply 

that kw(t)k ;! 0 as t ;! 1, unless additional assumptions are made. This is because 

continuous-time bounded energy signals can still have arbitrarily large excursions in ampli-
tude, provided these excursions occur over su�ciently narrow intervals of time that the integral 

of the square remains �nite | consider, for instance, a CT signal that is zero everywhere, 

except for a triangular pulse of height k and base 1�k4 centered at every nonzero integer value 

k. If the continuous-time signal w(t) is di�erentiable and both w and its derivative w_ have 

bounded energy (which is not the case for the preceding triangular-pulse example), then it is 

true that kw(t)k ;! 0 as t ;! 1. The reader may wish to verify this fact. 

It is not hard to show that DT or CT signals with �nite 2-norms form a vector space. 

On the vector space ` 2 

(respectively L2) of DT (respectively CT) signals with �nite 2-norm, 

one can de�ne a natural inner product as follows, between signals x and y : " # X4 hx � yi � x 

T (k)y(k) (for DT systems) (15.6) 

k 



�Z 

� 

4 T� x (t)y(t) dt (for CT systems) : (15.7) 

(The 2-norm is then just the square root of the inner product of a signal with itself.) These 

particular in�nite-dimensional inner-product vector spaces are of great importance in appli-
cations, and are the prime examples of what are known as Hilbert spaces. 

Power and RMS Value 

Another signal measure of interest is the \power" or mean energy of the signal. One also often 

deals with the square root of the power, which is commonly termed the \root-mean-square" 

(or \rms") value. For a signal w for which the following limits exist, we de�ne the power by 2 3 

N;1 4 

1 

X
Pw 

� lim 

4 w 

T (k)w(k)5 (for discrete ; time systems) (15.8)
N!1 2N 

k�;(N;1)" #Z L4 

1 

� lim w 

T (t)w(t)dt (for continuous ; time systems) : (15.9)
L!1 2L ;L 

(The above de�nitions assume that the time set is the entire time axis, but the necessary 

modi�cations for other choices of time set should be obvious.) We shall use the symbol �w 

to denote the rms value, namely 

p
Pw. The reason that �w 

is not a norm, according to the 

technical de�nition of a norm, is that �w 

� 0 does not imply that w � 0. 

Example 15.3 Some �nite-power signals: 

(a) For w(t) � 1 :
 

�w 

� 1
 

(b) For w(t) such that kwk2 

� 1:
 

�w 

� 0
 

(c) For w(t) � cos !0t (with t 2 R or t 2 Z):
 

�w 

� 

p1 .
 

2 

Example c) points out an important di�erence between bounded power and bounded energy 

signals: unlike bounded energy signals, if �w 

� 1, the signal doesn't necessarily decay to 

zero. 

As a �nal comment on the de�nition of the power of a signal, we elaborate on the hint 

in the preamble to our de�nition that the limit required by the de�nition may not exist for 

certain signals. The limit of a sequence or function (in our case, the sequence or function is the 

set of �nite-interval rms values, considered over intervals of increasing length) may not exist 

even if the sequence or function stays bounded, as when it oscillates between two di�erent 

�nite values. The following signal is an example of a CT signal that is bounded but does not 

have a well-de�ned power, because the required limit does not exist: ( 

1 if t 2 [22k� 22k+1], for k � 0� 1� 2� : : : 

w(t) � 

0 otherwise 



Also note that the desired limit may exist, but not be �nite. For instance, the limit of a 

sequence is +1 if the values of the sequence remain above any chosen �nite positive number 

for su�ciently large values of the index. 

Action: The 1-Norm 

The 1-norm of a signal is also sometimes termed the \action" of the signal, which is in turn 

de�ned as the sum (in DT) or integral (in CT) of the 1-norm of the signal value at each time, 

taken over the entire time set: 

4 kwk1 

� action of w " # X4 

� kw(k)k1 

(for discrete ; time systems) (15.10) 

k�Z 

� 

4 

� kw(t)k1 

dt (for continuous ; time systems) : (15.11) 

Recall that kw(k)k for the n-vector w(k) denotes the sum of magnitudes of its components. 

The space of all signals with �nite 1-norm are generally denoted by ` 1 

and L1 

for DT 

and CT signals respectively. These form normed-vector spaces. 

We leave you to construct examples that show familiar signals of �nite and in�nite 1-
norm. 

Relationships Among Signal Measures 

a) If w is a discrete-time sequence, then 

kwk2 

� 1 �) kwk1 

� 1 (15.12) 

but 

kwk2 

� 1 (6 � kwk1 

� 1 (15.13) 

b) If w is a continuous-time signal, then 

kwk2 

� 1 �6 ) kwk1 

� 1: (15.14) 

and 

kwk2 

� 1 6(� kwk1 

� 1: (15.15) 

c) If kwk1 

� 1, then (when �w 

exists) 

�w 

� kwk1 



Item a) is true because of the relationship between energy and magnitude for discrete-time 

signals. Since the energy of a DT signal is the sum of squared magnitudes, if the energy is 

bounded, then the magnitude must be bounded. However, the converse is not true |take for 

example, the signal w(k) � 1. As item b) indicates, though, bounded energy implies nothing 

about the boundedness of magnitude for continuous time signals. 

(Many more relationships of the above form can be stated.) 

15.3 Input-Output Stability 

At this point, it is important to make a connection between the stability of a system and its 

input-output behavior. The most important notion is that of ` p-stability (p-stability). 

De�nition 15.1 A system with input signal u and output signal y that is obtained from u 

through the action of an arbitrary operator H, so y � H(u), is ` p-stable or p-stable (p � 

1� 2� 1) if there exists a �nite C 2 R such that 

kykp 

� Ckukp 

(15.16) 

for every input u. 

A p-stable system is therefore characterized by the requirement that every input of �nite 

p-norm gives rise to an output of �nite p-norm. For the case p � 1, this notion is known 

as Bounded-Input Bounded-Output (BIBO) stability. We will see that BIBO stability is 

equivalent to p-stability for �nite-dimensional LTI state-space systems, but not necessarily in 

other cases. 

Example 15.4 The system described by one integrator: 

y_ � u 

is not BIBO stable. A step input is mapped to a ramp which is unbounded. It is 

not hard to see that this system is not p-stable for any p. 

15.3.1 BIBO Stability of LTI Systems 

A continuous-time LTI system may be characterized by its impulse response matrix, H( � ), 

whose (i� j)th entry hij( � ) is the impulse response from the jth input to the ith output. In 

other words the input-output relation is given by Z 

y(t) � H(t ; �)u(�)d� : 

Theorem 15.1 A CT LTI system with m inputs, p outputs, and impulse response matrix 

H(t) is BIBO stable if and only if 

mXZ 

max jhij(t)j dt � 1: 

1�i�p 

j�1 



Proof: The proof of su�ciency involves a straightforward computation of bounds. If u is an 

input signal that satis�es kuk1 

� 1, i.e. a bounded signal, then we have Z 

y(t) � H(t ; �)u(�)d�� 

and �	 �
 �Z m	

� � X	 � 

max jyi(t)j � max 

� hij(t ; �)uj(�) d� �
 �	 �
1�i�p i �
	 �
j�1 2	 3 Z X 

� 

4
max jhij(t ; �)j d�5
 max sup juj(t)j: 

i	 j tj 

It follows that 2	 3 XZ 

kyk1 

� sup max jyi(t)j � 

4
max jhij(t)jdt5
 kuk1 

� 1: 

t i i 

j 

In order to prove the converse of the theorem, we show that if the above integral is 

in�nite then there exists a bounded input that will be mapped to an unbounded output. Let 

us consider the case when p � m � 1, for notational simplicity (in the general case, we can 

still narrow the focus to a single entry of the impulse response matrix). Denote the impulse 

response by h(t) for this scalar case. If the integral Z
 

jh(t)j dt 

is unbounded then given any (large) M there exists an interval of length 2T such that Z T 

jh(t)j dt � M: 

;T 

Now by taking the input uM 

(t) as (
 

uM 

(t) �	

sgn(h(;t)) ;T � t � T
� 

0 jtj � T 

we obtain an output yM 

(t) that satis�es Z T 

sup jyM 

(t)j � yM 

(0) � h(0 ; �)uM 

(�) d� 

t ;T Z T 

� jh(0 ; �)j d� 

;T 

� M: 



In other words, for any M � 0, we can have an input whose maximum magnitude is 1 and 

whose corresponding output is larger than M . Therefore, there is no �nite constant C such 

that the inequality (24.3) holds. 

Further re�ection on the proof of Theorem 15.1 reveals that the constant kHk1 

de�ned by 

XZ 

kHk1 

� max jhij(t)jdt 

i 

j 

is the smallest constant C that satis�es the inequalty (24.3) when p � 1. This number is 

called the ` 1-norm of H(t). In the scalar case, this number is just the ` 1;norm of h( � ), 

regarded as a signal. 

The discrete-time case is quite similar to continuous-time where we start with a pulse 

response matrix, H( � ), whose (i� j)th entry hij( � ) is the pulse response from the jth input to 

the ith output. The input-output relation is given by X 

y(t) � H(t ; �)u(�) : 

� 

Theorem 15.2 A DT LTI system with m inputs, p outputs, and pulse response matrix H(t) 

is BIBO stable if and only if 

mXX 

max jhij(t)j � 1: 

1�i�p 

j�1 

t 

In addition, the constant kHk1 

de�ned by XX 

kHk1 

� max jhij 

(t)j
i 

j t 

is the smallest constant C that satis�es the inequalty (24.3) when p � 1. We leave the proof 

of these facts to the reader. 

Application to �nite-dimensional State-Space Models 

Now consider the application to the following causal CT LTI system in state-space form (and 

hence of �nite order) : 

x_ � Ax + Bu (15.17) 

y � Cx + Du (15.18) 

The impulse response of this system is given by 

H(t) � CeAtB + D�(t) for t � 0 



which has Laplace transform 

H(s) � C(sI ; A);1B + D 

The system (15.18) is BIBO stable if and only if the poles of H(s) are in the open left half 

plane. (We leave the proof to you.) This is in turn guaranteed if the system is asymptotically 

stable, i.e. if A has all its eigenvalues in the open left half plane. 

Example 15.5 BIBO Stability Doesn't Imply Asymptotic Stability 

It is possible that a system be BIBO stable and not asymptotically stable. Consider 

the system � � � � 

0 1 0 

x_ � x + u 

1 0 1 

y � ( 1 ;1 ) x 

This system is not stable since A has an eigenvalue at 1. Nevertheless, thanks 

to a pole-zero cancellation, the only pole that H(s) has is at ;1, so the system 

is BIBO stable. We shall have much more to say about such cancellations in the 

context of reachability, observability, and minimality (the example here turns out 

to be unobservable). 

Marginal stability of an LTI system, i.e., stability in the sense of Lyapunov but without 

asymptotic stability, is not su�cient to guarantee BIBO stability. For instance, consider a 

simple integrator, whose transfer function is 1�s. 

Time-Varying and Nonlinear Systems 

Although there are results connecting Lyapunov stability with I/O stability for general time-
varying and nonlinear systems, they are not as powerful as the linear time-invariant case. In 

particular, systems may be I/O stable with respect to one norm and not stable with respect 

to another. Below are some examples illustrating these facts. 

Example 15.6 A Time-Varying System 

Consider the time-varying DT system given by:


y(t) � H(u)(t) � u(0):
 

H is obviously 1-stable with gain less than 1. However, it is not 2-stable.
 

Example 15.7 A Nonlinear System 

Consider the nonlinear system given by: 

x_ � ;x + e 

xu� y � x: 

The unforced system is linear and is asymptotically stable. On the other hand the 

system is not I/O stable. To see this, consider the input u(t) � 1. Since ex � x, 

x_ is always strictly positive, indicating that x is strictly increasing. Hence, for a 

bounded input, the output is not bounded. 



15.3.2 p-Stability of LTI Systems (optional) 

In this section we will continue our analysis of the p-stability of systems described through 

input-output relations. Let us start with the continuous-time case, and restrict ourselves to 

single-input single-output. The input u(t) is related to the output y(t) by Z 

y(t) � h(t ; �)u(�)d� 

where h(t) is the impulse response. The following theorem shows that the constant C in 24.3 

is always bounded above by khk1. 

Theorem 15.3 If khk1 

� 1 and kukp 

� 1 then kykp 

� 1 and furthermore 

kykp 

� khk1kukp 

: 

Proof: In Theorem 15.1 we have already established this result for p � 1. In what follows 

p � 1� 2. The output y(t) satis�es �Z 1 

� p 

�Z 1 

�p� � jy(t)jp � j(h � u)(t)jp � 

� 

;1 

h(t ; �)u(�) d� � � 

;1 

jh(t ; �)j ju(�)j d�� � 

therefore, Z 1 

Z 1 

�Z 1 

�p 

kh � ukp � 

;1 

j(h � u)(t)jp dt � 

;1 ;1 

jh(t ; �)j ju(�)j d� dt : p 

Next we analyze the inner integral 

Z 1 

Z 1 

jh(t ; �)j ju(�)j d� � jh(t ; �)j1�q jh(t ; �)j1�p ju(�)j d� 

;1 ;1�Z 1 

�1�q 

�Z 1 

�1�p 

� 

;1 

jh(t ; �)j d� 

;1 

jh(t ; �)j ju(�)jp d� 

where the last inequality follows from Minkowski's inequalities, and 

1 

p 

+ 

1 

q 

� 1. Hence, 

Z 1 

�Z 1 

�p�q 

�Z 1 

� 

kh � ukp � 

;1 ;1 

jh(t ; �)j d� 

;1 

jh(t ; �)j ju(�)jp d� dtp Z 1 

�Z 1 

� 

� 

;1 

(khk1)p�q 

;1 

jh(t ; �)j ju(�)jp d� dt Z 1 

Z 1 

� khkp�q jh(t ; �)j ju(�)jp d� dt 1 ;1 ;1Z 1 

�Z 1 

� 

� khkp�q ju(�)jp jh(t ; �)j dt d�1 ;1 ;1Z 1 

� khkp�q+1 ju(�)jp d�1 ;1 

� khk1 

p kukpp 



Therefore 

kh � ukp 

� khk1 

kukp 

: 

Recall that when p � 1, khk1 

was the smallest constant for which the inequality kykp 

� 

Ckukp 

for all u. This is not the case for p � 2, and we will see later that a smaller constant 

can be found. We will elaborate on these issues when we discuss systems' norms later on in 

the course. The discrete-time case follows in exactly the same fashion. 

Example 15.8 For a �nite-dimensional state-space model, a system H is p-stable 

if and only if all the poles of of H(s) are in the LHP. This coincides with BIBO 

stability. 



Exercises 

Exercise 15.1 Non-causal Systems In this chapter, we only focused on causal operators, although 

the results derived were more general. As an example, consider a particular CT LTI system with a 

bi-lateral Laplace transform: 

s+ 2 

G(s) �	 : 

(s; 2)(s+ 1) 

(a) Check the p-stability and causality of the system in the following cases: 

(i) the ROC (Region of Convergence) is R1 

� fs 2 C j Re(s) � ;1g where Re(s) denotes the 

real part of s� 

(ii)the ROC is R2 

� fs 2 C j ; 1 � Re(s) � 2g� 

(iii) the ROC is R3 

� fs 2 C j Re(s) � 2g. 

(b)	 In the cases where the system is not p-stable for p � 2 and p � 1, �nd a bounded input that 

makes the output unbounded, i.e., �nd an input u 2 Lp 

that produces an output y 62 Lp, for 

p � 2� 1. 

Exercise 15.2 In nonlinear systems, p-stability may be satis�ed in only a local region around zero. 

In that case, a system will be locally p-stable if: 

kGukp 

� Ckukp� for all u with kukp 

� � 

Consider the system: 

x_ � Ax+ Bu 

z � Cx+ Du 

y � g(y) 

Where g is a continuous function on [;T� T ]. Which of the following systems is p-stable, locally 

p-stable or unstable for p � 1: 

(a) g(x) � cos x. 

(b) g(x) � sin x. 

(c) g(x) � Sat(x) where	 � 

Sat(x) � 

x jxj � 1 

1 jxj � 1 
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