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Chapter 14 

Internal Stability for LTI Systems
 

14.1 Introduction 

Constructing a Lyapunov function for an arbitrary nonlinear system is not a trivial exercise. 

The complication arises from the fact that we cannot restrict the class of functions to search 

from in order to prove stability. The situation is di�erent for LTI systems. In this chapter, 

we address the question of constructing Lyapunov functions for linear systems and then we 

present and verify Lyapunov indirect method for proving stability of a nonlinear system. 

14.2 Quadratic Lyapunov Functions for LTI Systems 

Consider the continuous-time system 

x_ (t) � Ax(t) : (14.1) 

We have already established that the system (14.1) is asymptotically stable if and only if all 

the eigenvalues of A are in the open left half plane. In this section we will show that this result 

can be inferred from Lyapunov theory. Moreover, it will be shown that quadratic Lyapunov 

functions su�ce. A consequence of this is that stability can be assessed by methods that 

may be computationally simpler than eigenanalysis. More importantly, quadratic Lyapunov 

functions and the associated mathematics turn up in a variety of other problems, so they are 

worth mastering in the context of stability evaluation. 

Quadratic Positive-De�nite Functions 

Consider the function 

V (x) � x 

T Px� x 2 R
n 



where P is a symmetric matrix. This is the general form of a quadratic function in R
n . It is 

su�cient to consider symmetric matrices� if P is not symmetric, we can de�ne P1 

� 

1
2 

(P +P 

T ). 

It follows immediately that xT Px � xT P1x (verify, using the fact that xT Px is a scalar). 

Proposition 14.1 V (x) is a positive de�nite function if and only if all the eigenvalues of P
 

are positive.
 

Proof: Since P is symmetric, it can be diagonalized by an orthogonal matrix, i.e.,
 

P � UT DU with UT U � I and D diagonal. 

Then, if y � Ux X 

V (x) � x 

T UT DUx � y 

T Dy � �ijyij2: 

i 

Thus, 

V (x) � 0 8x � 0 6 , �i 

� 0� 8i: 

De�nition 14.1 A matrix P that satis�es 

x 

T Px � 0 8x 6 (14.2)� 0 

is called positive de�nite. When P is symmetric (which is usually the case of interest, for 

the reason mentioned above), we will denote its positive de�niteness by P � 0. If xT Px � 

0 8x � 0, then 6 P is positive semi-de�nite, which we denote in the symmetric case by P � 0. 

For a symmetric positive de�nite matrix, it follows that 

�min(P )kxk2 � V (x) � �max(P )kxk2: 

This inequality follows directly from the proof of Proposition 14.1. 

It is also evident from the above discussion that the singular values and eigenvalues of 

any positive de�nite matrix coincide. 

Exercise: Show that P � 0 if and only if P � GT G where G is nonsingular. The matrix 

1 

G is called a square root of P and is denoted by P 

2 . Show that H is another square root 

of P if and only if G � WH for some orthogonal matrix W . Can you see how to construct 

a symmetric square root� (You may �nd it helpful to begin with the eigen-decomposition 

P � UT DU , where U is orthogonal and D is diagonal.) 


 



Quadratic Lyapunov Functions for CT LTI Systems 

Consider de�ning a Lyapunov function candidate of the form 

V (x) � x 

T Px� P � 0, (14.3) 

for the system (14.1). Then 

V_ (x) � x_ 

T Px + x 

T Px_ 

� x 

T AT Px + x 

T P Ax 

� x 

T (AT P + PA)x 

� ;x 

T Qx � 

where we have introduced the notation Q � ;(AT P + PA)� note that Q is symmetric. Now 

invoking the Lyapunov stability results from Lecture 5, we see that V is a Lyapunov function 

if Q � 0, in which case the equilibrium point at the origin of the system (14.1) is stable i.s.L. 

If Q � 0, then the equilibrium point at the origin is globally asymptotically stable. In this 

latter case, the origin must be the only equilibrium point of the system, so we typically say 

the system (rather than just the equilibrium point) is asymptotically stable. 

The preceding relationships show that in order to �nd a quadratic Lyapunov function 

for the system (14.1), we can pick Q � 0 and then try to solve the equation 

AT P + PA � ;Q (14.4) 

for P . This equation is referred to as a Lyapunov equation, and is a linear system of equations 

in the entries of P . If it has a solution, then it has a symmetric solution (show this!), so 

we only consider symmetric solutions. If it has a positive de�nite solution P � 0, then we 

evidently have a Lyapunov function xT Px that will allow us to prove the asymptotic stability 

of the system (14.1). The interesting thing about LTI systems is that the converse also holds: 

If the system is asymptotically stable, then the Lyapunov equation (14.4) has positive de�nite 

solution P � 0 (which, as we shall show, is unique). This result is stated and proved in the 

following theorem. 

Theorem 14.1 Given the dynamic system (14.1) and any Q � 0, there exists a positive 

de�nite solution P of the Lyapunov equation 

AT P + PA � ;Q 

if and only if all the eigenvalues of A are in the open left half plane (OLHP). The solution P 

in this case is unique. 

Proof: If P � 0 is a solution of (14.4), then V (x) � xT Px is a Lyapunov function of 

_ � 0. Hence, system (14.1) is (globally) asymptotically system (14.1) with V (x) � 0 for any x 6

stable and thus the eigenvalues of A are in the OLHP.




To prove the converse, suppose A has all eigenvalues in the OLHP, and Q � 0 is given. 

De�ne the symmetric matrix P by Z 1 

P � e 

tAT 

QetA dt : (14.5) 

0 

This integral is well de�ned because the integrand decays exponentially to the origin, since 

the eigenvalues of A are in the OLHP. Now Z 1 

Z 1 

AT P + PA � AT e 

tAT 

QetAdt + e 

tAT 

QetAAdt 

0 0Z 1 d 

h i 

� e 

tAT 

QetA dt 

0 

dt 

� ;Q 

so P satis�es the Lyapunov equation. 

To prove that P is positive de�nite, note that Z 1 

x 

T Px � x 

T e 

tAT 

QetAxdt Z0 

1 

1 

� kQ 2 e 

tA xk2dt � 0 

0 

and 

T 

1 

x Px � 0 ) Q 2 e 

tA x � 0 ) x � 0 � 

1 

where Q 2 denotes a square root of Q. Hence P is positive de�nite. 

To prove that the P de�ned in (14.5) is the unique solution to (14.4) when A has all 

eigenvalues in the OLHP, suppose that P2 

is another solution. Then 

P2 

� ; 

Z
Z0 

1 

dt

d 

h 

e 

tAT 

P2e 

tA 

i 

dt (verify this identity) 

1 

� � 

� ; e 

tAT 

AT P2 

+ P2A e 

tAdt Z 1 

0 

� e 

tAT 

QetAdt � P 

0 

This completes the proof of the theorem. 

A variety of generalizations of this theorem are known. 

Quadratic Lyapunov Functions for DT LTI Systems 

Consider the system � � 

x(t + 1) � Ax(t) � f x(t) (14.6) 

If 

V (x) � x 

T P x� 



then 

_ 4 TV (x) � V (f(x)) ; V (x) � x 

T AT P Ax ; x Px: 

Thus the resulting Lyapunov equation to study is 

AT PA ; P � ;Q : (14.7) 

The following theorem is analogous to what we proved in the CT case, and we leave its proof 

as an exercise. 

Theorem 14.2 Given the dynamic system (14.6) and any Q � 0, there exists a positive 

de�nite solution P of the Lyapunov equation 

AT PA + P � ;Q 

if and only if all the eigenvalues of A have magnitude less than 1 (i.e. are in the open unit 

disc). The solution P in this case is unique. 

Example 14.1 Di�erential Inclusion 

In many situations, the evolution of a dynamic system can be uncertain. One way 

of modeling this uncertainty is by di�erential (di�erence) inclusion which can be 

described as follows: 

x_ (t) � fAx(t) j A � Ag 

where A is a set of matrices. Consider the case where A is a �nite set of matrices 

and their convex combinations: 

m mX X 

A � fA � �iAi 

j �i 

� 1g
i�1 i�1 

One way to guarantee the stability of this system is to �nd one Lyapunov function 

for all systems de�ned by A. If we look for a quadratic Lyapunov function, then 

it su�ces to �nd a P that satis�es: 

Ai
T P + PAi 

� ;Q� i � 1� 2� : : : m 

for some positive de�nite Q. Then V (x) � xT Px satis�es V_ (x) � ;xT Qx (verify) 

showing that the system is asymptotically stable. 

Example 14.2 Set of Bounded Norm 

In this problem, we are interested in studying the stability of linear time-invariant 

systems of the form x_ (t) � (A + �)x(t) where � is a real matrix perturbation 

with bounded norm. In particular, we are interested in calculating a good bound 

on the size of the smallest perturbation that will destabilize a stable matrix A. 



This problem can be cast as a di�erntial inclusion problem as in the previous 

example with


A � fA +� k k�k � �� � is a real matrixg


Since A is stable, we can calculate a quadratic Lyapunov function with a matrix 

P satisfying AT P + PA � ;Q and Q is positive de�nite. Applying the same 

Lyapunov function to the perturbed system we get: � � 

V_ (x) � x 

T AT P + PA +�T P + P � x 

It is evident that all perturbations satisfying 

�T P + P � � Q 

will result in a stable system. This can be guaranteed if 

2�max(P )�max(�) � �min(Q) 

This provides a bound on the perturbation although it is potentially conservative. 

Example 14.3 Bounded Perturbation 

Casting the perturbation in the previous example in terms of di�erential inclusion 

introduces a degree of conservatism in that the value � takes can change as a 

function of time. Consider the system: 

x_ (t) � (A + �)x(t) 

where A is a known �xed stable matrix and � is an unknown �xed real perturba-
tion matrix. The stability margin of this system is de�ned as 

�(A) � min fk�k j A + � is unstable g: 

�2Rn�n 

We desire to compute a good lower bound on �(A). The previous example gave 

one such bound. 

First, it is easy to argue that the minimizing solution �o 

of the above problem 

results in A + �0 

having eigenvalues at the imaginary axis (either at the origin, 

or in two complex conjugate locations). This is a consequence of the fact that 

the eigenvalues of A + p�0 

will move continuously in the complex plane as the 

parameter p varies from 0 to 1. The intersection with the imaginary axis will 

happen at p � 1� if not, a perturbation of smaller size can be found. 

We can get a lower bound on � by dropping the condition that � is a real matrix, 

and allowing complex matrices (is it clear why this gives a lower bound�). We can 

show: 

min fk�k j A + � is unstable g � min �min(A ; j!I): 

�2Cn�n !2R 



To verify this, notice that if the minimizing solution has an eigenvalue at the 

imaginary axis, then j!0I;A;�0 

should be singular while we know that j!0 

;A is 

not. The smallest possible perturbation that achieves this has size �min(A;j!0I). 

We can then choose !0 

that gives the smallest possible size. In the exercises, we 

further improve this bound. 

14.3	 Lyapunov's Indirect Method: Analyzing the Lineariza-
tion 

Suppose the system 

x_ � f(x) (14.8) 

has an equilibrium point at x � 0 (an equilibrium at any other location can be dealt with 

by a preliminary change of variables to move that equilibrium to the origin). Assume we can 

write 

f(x) � Ax + h(x) 

where kh(x)k 

lim � 0 

kxk!0 
kxk 

i.e. h(x) denotes terms that are higher order than linear, and A is the Jacobian matrix 

associated with the linearization of (14.8) about the equilibrium point. The linearized system 

is thus given by 

x_ � Ax :	 (14.9) 

We might expect that if (14.9) is asymptotically stable, then in a small neighborhood around 

the equilibrium point, the system (14.8) behaves like (14.9) and will be stable. This is made 

precise in the following theorem. 

Theorem 14.3 If the system (14.9) is asymptotically stable, then the equilibrium point of 

system (14.8) at the origin is (locally) asymptotically stable. 

Proof: If system (14.9) is asymptotically stable, then for any Q � 0, there exists P � 0 such 

that 

AT P + PA � ;Q 

and V (x) � xT Px is a Lyapunov function for system (14.9). Consider V (x) as a Lyapunov 

function candidate for system (14.8). Then 

_V (x) � x 

T (AT P + PA)x + 2x 

T Ph(x) 

� ;�min(Q)kxk2 + 2kxk � kh(x)k � �max(P )�	 � 

� ; �min(Q) ; 2�max(P ) 

kh(x)k � kxk2 

kxk 



From the assumption on h, for every � � 0, there exists r � 0 such that 

kh(x)k � �kxk � 8 kxk � r: 

_This implies that V is strictly negative for all kxk � r, where r is chosen for 

�min(Q)
� � : 

2�max(P ) 

This concludes the proof. 

Notice that asymptotic stability of the equilibrium point of the system (14.8) can be 

concluded from the asymptotic stability of the linearized system (14.9) only when the eigen-
values of A have negative real parts. It can also be shown that if there is any eigenvalue of A 

in the right half plane, i.e. if the linearization is exponentially unstable, then the equilibrium 

point of the nonlinear system is unstable. The above theorem is inconclusive if there are 

eigenvalues on the imaginary axis, but none in the right half plane. The higher-order terms of 

the nonlinear model can in this case play a decisive role in determining stability� for instance, 

if the linearization is polynomially (rather than exponentially) unstable, due to the presence 

of one or more Jordan blocks of size greater than 1 for eigenvalues on the imaginary axis (and 

the absence of eigenvalues in the right half plane), then the higher-order terms can still cause 

the equilibrium point to be stable. 

It turns out that stronger versions of the preceding theorem hold if A has no eigenvalues 

on the imaginary axis: not only the stability properties of the equilibrium point, but also the 

local behavior of (14.8) can be related to the behavior of (14.9). We will not discuss these 

results further here. 

Similar results hold for discrete-time systems. 

Example 14.4 

The equations of motion for a pendulum with friction are 

x_1 

� x2 

x_2 

� ;x2 

; sin x1 

The two equilibrium points of the system are at (0� 0) and (�� 0). The linearized 

system at the origin is given by 

x_1 

� x2 

x_2 

� ;x1 

; x2 

or " #
 

0 1
 

x_ � x � Ax : ;1 ;1 



This A has all its eigenvalues in the OLHP. Hence the equilibrium point at the 

origin is asymptotically stable. Note, however, that if there were no damping, then 

the linearized system would be " # 

0 1 

x_ � x ;1 0 

and the resulting matrix A has eigenvalues on the imaginary axis. No conclusions 

can be drawn from this situation using Lyapunov linearization methods. Lya-
punov's direct method, by contrast, allowed us to conclude stability even in the 

case of zero damping, and also permitted some detailed global conclusions in the 

case with damping. 

The linearization around the equilibrium point at (�� 0) is 

z_1 

� z2 

z_2 

� +z1 

; z2 

where z1 

� x1 

; � and z2 

� x2, so these variables denote the (small) deviations of 

x1 

and x2 

from their respective equilibrium values. Hence " # 

0 1 

A � x � Ax � 

1 ;1 

which has one eigenvalues in the RHP, indicating that this equilibrium point is 

unstable. 



Exercises 

Exercise 14.1 Bounded Perturbation Recall Example 14.3. In this problem we want to improve 

the lower bound on �(A). 

(a)	 To improve the lower bound, we use the information that if � is real, then poles appear in complex 

conjugate pair. De�ne �
 �
 

A wI 

Aw 

� : ;wI A 

Show that 

�(A) � min �min[Aw]: 

w2R 

(b)	 If you think harder about your proof above, you will be able to further improve the lower bound. 

In fact, it follows that 

�(A) � min �2n;1[Aw] 

w2R 

where �2n;1 

is the next to last singular value. Show this result. 

Exercise 14.2 Consider the LTI unforced system given below: 10 

0 1 0 0 : : : 0
 

0 0 1 0 : : : 0
 

. . . . . .
 . . . . . .


BB@


CCA


xx � Ax �_ 


 . . . . . . 

;aN;1 

;aN;2 

: : : : : : : : : ;a0 

(a)	 Under what conditions is this system asymptotically stable� 

Assume the system above is asymptotically stable. Now, consider the perturbed system 

x_ � Ax +�x�
 

where � is given by
 10 

0 0 0 0 : : : 0
 

0 0 0 0 : : : 0
 

. . . . . .



 . . . . . . 

� �
 

BB@


CCA


�
 �i 

2 R: 


 . . . . . . 

;�N;1 

;�N;2 

: : : : : : : : : ;�0 

(b)	 Argue that the perturbation with the smallest Frobenius norm that destabilizes the system (makes 

the system not asymptotically stable) will result in A + � having an eigenvalue at the imaginary 

axis. 

(c)	 Derive an exact expression for the smallest Frobenius norm of � necessary to destabilize the above 

system (i.e., x_ � (A+�)x is not asymptotically stable). Give an expression for the perturbation 

� that attains the minimum. 

(d) Evaluate your answer in part 3 for the case N � 2, and a0 

� a1. 



Exercise 14.3 Periodic Controllers 

(a)	 Show that the periodically varying system in Exercise 7.4 is asymptotically stable if and only if 

all the eigenvalues of the matrix [AN;1:::A0] have magnitude less than 1. 

(b) (i) Given the system ���� 

0 1 0 

x(k +	 1) � x(k) + u(k) � y(k) � ( 1 1 ) x(k)
1 ;1 1 

write down a linear state-space representation of the closed-loop system obtained by implement-
ing the linear output feedback control u(k) � g(k)y(k). 

(ii) It turns out that there is no constant gain g(k) � g for which the above system is asymp-
totically stable. (Optional: Show this.) However, consider the periodically varying system 

obtained by making the gain take the value ;1 for even k and the value 3 for odd k. Show that 

any nonzero initial condition in the resulting system will be brought to the origin in at most 4 

steps. (The moral of this is that periodically varying output feedback can do more than constant 

output feedback.) 

Exercise 14.4 Delay Systems 

The material we covered in class has focused on �nite-dimensional systems, i.e., systems that 

have state-space descriptions with a �nite number of state variables. One class of systems that does 

not belong to the class of �nite-dimensional systems is continuous-time systems with delays. 

Consider the following forced continuous-time system: 

y(t) + a1y(t ; 1) + a2y(t ; 2) + : : : + aN 

y(t ; N) � u(t) t � N� t 2 R: 

This is known as a delay system with commensurate delays (multiple of the same delay unit). We 

assume that u(t) � 0 for all t � N . 

(a)	 Show that we can compute the solution y(t)� t � N , if y(t) is completely known in the interval 

[0,N). Explain why this system cannot have a �nite-dimensional state space description. 

(b)	 To compute the solution y(t) given the initial values (denote those by the function f(t)� t 2 [0� N), 

which we will call the initial function) and the input u, it is useful to think of every non-negative 

real number as t � � + k with � 2 [0� 1) and k being a non-negative integer. Show that for every 

�xed � , the solution evaluated at � + k (y(� + k)) can be computed using discrete-time methods 

and can be expressed in terms of the matrix 10 

A �
 

BB@


0 1 0 0 : : : 0
 

0 0 1 0 : : : 0
 

. . . . . .



 . . . . . . 

CCA

 . . . . . . 

;aN 

;aN;1 

: : : : : : : : : ;a1 

and the initial vector 

T( f(�) f(� + 1) : : : f(� + N ; 1) ) : 

Write down the general solution for y(t). 



(c) Compute the solution for N � 2, f(t) � 1 for t 2 [0� 2), and u(t) � e;(t;2) for t � 2. 

(d)	 This system is asymptotically stable if for every � � 0, there exists a � � 0 such that for all initial 

functions with jf(t)j � �� t 2 [0� N), and u � 0, it follows that jy(t)j � �, and limt!1 

y(t) � 0. 

Give a necessary and su�cient condition for the asymptotic stability of this system. Explain 

your answer. 

(e)	 Give a necessary and su�cient condition for the above system to be BIBO stable (1-stable). 

Verify your answer. 

Exercise 14.5 Local Stabilization 

(a)	 One method for stabilizing a nonlinear system is to linearize it around an equilibrium point and 

then stabilize the resulting linear system. More formally, consider a nonlinear time-invariant 

system 

x_ � f(x� u) 

~ ~and its linearization around an equilibrium point (x� u) 

�_x � A�x + B�u: 

As usual, �x � x ; x~ and �u � u ; u~. Suppose that the feedback �u � K�x asymptotically 

stabilizes the linearized system. 

1. What can you say about the eigenvalues of the matrix A + BK.
 

2. Show that x_ � f(x� Kx) is (locally) asymptotically stable around x~
. 

(b) Consider the dynamic system S1 

governed by the following di�erential equation: 

y�+ y_ 

4 + y_ 

2 u + y 

3 � 0 

where u is the input. 

1. Write down a state space representation for the system S1 

and �nd its unique equilibrium 

point x� . 

2. Now try to apply the above method to the system S1 

at the equilibrium point x� and 

u� � 0. Does the linearized system provide information about the stability of S1. Explain 

why the method fails. 

(c)	 To �nd a stabilizing controller for S1, we need to follow approaches that are not based on local 

linearization. One approach is to pick a positive de�nite function of the states and then construct 

the control such that this function becomes a Lyapunov function. This can be a very frustrating 

exercise. A trick that is commonly used is to �nd an input as a function of the states so that 

the resulting system belongs to a class of systems that are known to be stable (e.g. a nonlinear 

circuit or a mechanical system that are known to be stable). Use this idea to �nd an input u as 

function of the states such that S1 

is stable. 



Exercise 14.6 For the system 

x_ (t) � sin[x(t) + y(t)] 

y_(t) � e 

x(t) ; 1 

determine all equilibrium points, and using Lyapunov's indirect method (i.e. linearization), classify 

each equilibrium point as asymptotically stable or unstable. 

Exercise 14.7 For each of the following parts, all of them optional, use Lyapunov's indirect method 

to determine, if possible, whether the origin is an asymptotically stable or unstable equilibrium point. 

(a) 

x_1 

� ;x1 

+ x 

2 

2 

x_2 

� ;x2(x1 

+ 1) 

(b) 

x_ 1 

� x31 

+ x2 

x_ 2 

� x1 

; x2 

(c) 

x_1 

� ;x1 

+ x2 

x_2 

� ;x2 

+ x 

2 

1 

(d) 

x1(k + 1) � 2x1(k) + x2(k)
2 

x2(k + 1) � x1(k) + x2(k) 

(e) 

x1(k + 1) � 1 ; e 

x1 

(k)x2 

(k) 

x2(k + 1) � x1(k) + 2x2(k) 

Exercise 14.8 For each of the nonlinear systems below, construct a linearization for the equilibrium 

point at the origin, assess the stability of the linearization, and decide (using the results of Lyapunov's 

indirect method) whether you can infer something about the stability of the equilibrium of the nonlin-
ear system at the origin. Then use Lyapunov's direct method prove that the origin is actually stable 

in each case� if you can make further arguments to actually deduce asymptotic stability or even global 

asymptotic stability, do so. [Hints: In part (a), �nd a suitable Lyapunov (energy) function by inter-
preting the model as the dynamic equation for a mass attached to a nonlinear (cubic) spring. In parts 

(b) and (c), try a simple quadratic Lyapunov function of the form px2 + qy2, then choose p and q 

appropriately. In part (d), use the indicated Lyapunov function.] 



(a) 

x_ � y 

y_ � ;x 

3 

(b) 

x_ � ;x 

3 ; y 

2 

y_ � xy ; y 

3 

(c) 

x2(k) 

x1(k + 1) � 21 + x2(k) 

x1(k) 

x2(k + 1) � 21 + x2(k) 

(d) 

x_ � y(1 ; x) 

y_ � ;x(1 ; y) 

V (x� y) � ;x ; ln(1 ; x) ; y ; ln(1 ; y) 
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