
Lectures on Dynamic Systems and
 

Control
 

Mohammed Dahleh Munther A. Dahleh George Verghese


Department of Electrical Engineering and Computer Science


Massachuasetts Institute of Technology1


1�c



Chapter 13 

Internal (Lyapunov) Stability
 

13.1 Introduction 

We have already seen some examples of both stable and unstable systems. The objective of 

this chapter is to formalize the notion of internal stability for general nonlinear state-space 

models. Apart from de�ning the various notions of stability, we de�ne an entity known as a 

Lyapunov function and relate it to these various stability notions. 

13.2 Notions of Stability 

For a general undriven system 

x_ (t) � f(x(t)� 0� t) (CT ) (13.1) 

x(k + 1) � f(x(k)� 0� k) (DT )� (13.2) 

we say that a point x is an equilibrium point from time t0 

for the CT system above if f(x� 0� t) � 

0� 8t � t0, and is an equilibrium point from time k0 

for the DT system above if f(x� 0� k) � 

x�� 8k � k0. If the system is started in the state � x at time t0 

or k0, it will remain there for all 

time. Nonlinear systems can have multiple equilibrium points (or equilibria). (Another class 

of special solutions for nonlinear systems are periodic solutions, but we shall just focus on 

equilibria here.) We would like to characterize the stability of the equilibria in some fashion. 

For example, does the state tend to return to the equilibrium point after a small perturbation 

away from it� Does it remain close to the equilibrium point in some sense� Does it diverge� 

The most fruitful notion of stability for an equilibrium point of a nonlinear system is 

given by the de�nition below. We shall assume that the equilibrium point of interest is at 

the origin, since if x 6� 0, a simple translation can always be applied to obtain an equivalent 

system with the equilibrium at 0. 



De�nition 13.1 A system is called asymptotically stable around its equilibrium point at the 

origin if it satis�es the following two conditions: 

1. Given any � � 0� 9�1 

� 0 such that if kx(t0)k � �1, then kx(t)k � �� 8 t � t0: 

2. 9�2 

� 0 such that if kx(t0)k � �2, then x(t) ! 0 as t !1. 

The �rst condition requires that the state trajectory can be con�ned to an arbitrarily 

small \ball" centered at the equilibrium point and of radius �, when released from an arbitrary 

initial condition in a ball of su�ciently small (but positive) radius �1. This is called stability in 

the sense of Lyapunov (i.s.L.). It is possible to have stability in the sense of Lyapunov without 

having asymptotic stability, in which case we refer to the equilibrium point as marginally 

stable. Nonlinear systems also exist that satisfy the second requirement without being stable 

i.s.L., as the following example shows. An equilibrium point that is not stable i.s.L. is termed 

unstable. 

Example 13.1 (Unstable Equilibrium Point That Attracts All Trajectories) 

Consider the second-order system with state variables x1 

and x2 

whose dynamics 

are most easily described in polar coordinates via the equations 

r_ � r(1 ; r) 

_� � sin2(��2) (13.3) q
where the radius r is given by r � x21 

+ x22 

and the angle � by 0 � � � 

arctan (x2�x1) � 2�. (You might try obtaining a state-space description directly 

involving x1 

and x2.) It is easy to see that there are precisely two equilibrium 

points: one at the origin, and the other at r � 1, � � 0. We leave you to verify 

with rough calculations (or computer simulation from various initial conditions) 

that the trajectories of the system have the form shown in the �gure below. 

Evidently all trajectories (except the trivial one that starts and stays at the origin) 

end up at r � 1, � � 0. However, this equilibrium point is not stable i.s.L., 

because these trajectories cannot be con�ned to an arbitrarily small ball around 

the equilibrium point when they are released from arbitrary points with any ball 

(no matter how small) around this equilibrium. 
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Figure 13.1: System Trajectories 

13.3 Stability of Linear Systems 

We may apply the preceding de�nitions to the LTI case by considering a system with a 

diagonalizable A matrix (in our standard notation) and u � 0. The unique equilibrium point 

is at x � 0, provided A has no eigenvalue at 0 (respectively 1) in the CT (respectively DT) 

case. (Otherwise every point in the entire eigenspace corresponding to this eigenvalue is an 

equilibrium.) Now 

x_ (t) � e 
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Hence, it is clear that in continuous time a system with a diagonalizable A is asymptotically 

stable i� 

Re(�i) � 0� i 2 f1� : : : � ng� (13.6) 

while in discrete time the requirement is that 

j�ij � 1 i 2 f1� : : : � ng� (13.7) 

Note that if Re(�i) � 0 (CT) or j�ij � 1 (DT), the system is not asymptotically stable, but 

is marginally stable. 


 



Exercise: For the nondiagonalizable case, use your understanding of the Jordan form to show 

that the conditions for asymptotic stability are the same as in the diagonalizable case. For 

marginal stability, we require in the CT case that Re(�i) � 0, with equality holding for at 

least one eigenvalue� furthermore, every eigenvalue whose real part equals 0 should have its 

geometric multiplicity equal to its algebraic multiplicity, i.e., all its associated Jordan blocks 

should be of size 1. (Verify that the presence of Jordan blocks of size greater than one for 

these imaginary-axis eigenvalues would lead to the state variables growing polynomially with 

time.) A similar condition holds for marginal stability in the DT case. 

Stability of Linear Time-Varying Systems 

Recall that the general unforced solution to a linear time-varying system is 

x(t) � �(t� t0)x(t0)� 

where �(t� �) is the state transition matrix. It follows that the system is 

1. stable i.s.L. at x � 0 if sup k�(t� t0)k � m(t0) � 1. 

t 

2. asymptotically stable at x � 0 if lim k�(t� t0)k ! 0� 8t0. 

t!1 

These conditions follow directly from De�nition 13.1. 

13.4 Lyapunov's Direct Method 

General Idea 

Consider the continuous-time system 

x_ (t) � f(x(t)) (13.8) 

with an equilibrium point at x � 0. This is a time-invariant (or \autonomous") system, since f 

does not depend explicitly on t. The stability analysis of the equilibrium point in such a system 

is a di�cult task in general. This is due to the fact that we cannot write a simple formula 

relating the trajectory to the initial state. The idea behind Lyapunov's \direct" method is to 

establish properties of the equilibrium point (or, more generally, of the nonlinear system) by 

studying how certain carefully selected scalar functions of the state evolve as the system state 

evolves. (The term \direct" is to contrast this approach with Lyapunov's \indirect" method, 

which attempts to establish properties of the equilibrium point by studying the behavior of 

the linearized system at that point. We shall study this next Chapter.) 

Consider, for instance, a continuous scalar function V (x) that is 0 at the origin and 

positive elsewhere in some ball enclosing the origin, i.e. V (0) � 0 and V (x) � 0 for x 6� 0 in 

_this ball. Such a V (x) may be thought of as an \energy" function. Let V (x) denote the time 

derivative of V (x) along any trajectory of the system, i.e. its rate of change as x(t) varies 



according to (13.8). If this derivative is negative throughout the region (except at the origin), 

then this implies that the energy is strictly decreasing over time. In this case, because the 

energy is lower bounded by 0, the energy must go to 0, which implies that all trajectories 

converge to the zero state. We will formalize this idea in the following sections. 

Lyapunov Functions 

De�nition 13.2 Let V be a continuous map from R
n to R. We call V (x) a locally positive 

de�nite (lpd) function around x � 0 if 

1. V (0) � 0. 

2. V (x) � 0� 0 � kxk � r for some r. 

Similarly, the function is called locally positive semide�nite (lpsd) if the strict inequality on 

the function in the second condition is replaced by V (x) � 0. The function V (x) is locally 

negative de�nite (lnd) if ;V (x) is lpd, and locally negative semide�nite (lnsd) if ;V (x) is 

lpsd. What may be useful in forming a mental picture of an lpd function V (x) is to think of 

it as having \contours" of constant V that form (at least in a small region around the origin) 

a nested set of closed surfaces surrounding the origin. The situation for n � 2 is illustrated 

in Figure 13.2. 

V(x)=c 1 

V(x)=c 2 

V(x)=c 3 

Figure 13.2: Level lines for a Lyapunov function, where c1 

� c2 

� c3. 

Throughout our treatment of the CT case, we shall restrict ourselves to V (x) that have 

continuous �rst partial derivatives. (Di�erentiability will not be needed in the DT case | 

continuity will su�ce there.) We shall denote the derivative of such a V with respect to time 

_along a trajectory of the system (13.8) by V (x(t)). This derivative is given by 

dV (x) dV (x) _V (x(t)) � x_ � f(x)
dx dx 

where 

dV
dx 

(x) is a row vector | the gradient vector or Jacobian of V with respect to x | 

containing the component-wise partial derivatives @
@
x
V 

i 

. 



_De�nition 13.3 Let V be an lpd function (a \candidate Lyapunov function"), and let V be 

_its derivative along trajectories of system (13.8). If V is lnsd, then V is called a Lyapunov 

function of the system (13.8). 

Lyapunov Theorem for Local Stability 

Theorem 13.1 If there exists a Lyapunov function of system (13.8), then x � 0 is a stable 

_equilibrium point in the sense of Lyapunov. If in addition V (x) � 0, 0 � kxk � r1 

for some 

_r1, i.e. if V is lnd, then x � 0 is an asymptotically stable equilibrium point. 

Proof: First, we prove stability in the sense of Lyapunov. Suppose � � 0 is given. We need 

to �nd a � � 0 such that for all kx(0)k � �, it follows that kx(t)k � �� 8t � 0. The Figure 

19.6 illustrates the constructions of the proof for the case n � 2. Let �1 

� min(�� r). De�ne 

r δ 

ε1 

Figure 13.3: Illustration of the neighborhoods used in the proof 

m � min V (x): 

kxk��1 

Since V (x) is continuous, the above m is well de�ned and positive. Choose � satisfying 

0 � � � �1 

such that for all kxk � �, V (x) � m. Such a choice is always possible, again 

because of the continuity of V (x). Now, consider any x(0) such that kx(0)k � �, V (x(0)) � m, 

_and let x(t) be the resulting trajectory. V (x(t)) is non-increasing (i.e. V (x(t)) � 0) which 

results in V (x(t)) � m. We will show that this implies that kx(t)k � �1. Suppose there 

exists t1 

such that kx(t1)k � �1, then by continuity we must have that at an earlier time t2, 

kx(t2)k � �1, and minkxk��1 

kV (x)k � m � V (x(t2)), which is a contradiction. Thus stability 

in the sense of Lyapunov holds. 



_To prove asymptotic stability when V is lnd, we need to show that as t !1, V (x(t)) ! 

0� then, by continuity of V , kx(t)k ! 0. Since V (x(t)) is strictly decreasing, and V (x(t)) � 0 

we know that V (x(t)) ! c, with c � 0. We want to show that c is in fact zero. We can argue 

by contradiction and suppose that c � 0. Let the set S be de�ned as 

S � fx 2 R
njV (x) � cg � 

and let B� 

be a ball inside S of radius �, 

B� 

� fx 2 Sjkxk � �g : 

Suppose x(t) is a trajectory of the system that starts at x(0), we know that V (x(t)) is 

decreasing monotonically to c and V (x(t)) � c for all t. Therefore, x(t) 2� B�� recall that 

B� 

� S which is de�ned as all the elements in R
n for which V (x) � c. In the �rst part of 

the proof, we have established that if kx(0)k � � then kx(t)k � �. We can de�ne the largest 

derivative of V (x) as 

_;� � max V (x): 

��kxk�� 

_Clearly ;� � 0 since V (x) is lnd. Observe that, Z t 

_V (x(t) � V (x(0)) + V (x(�))d� 

0 

� V (x(0)) ; �t� 

which implies that V (x(t)) will be negative which will result in a contradiction establishing 

the fact that c must be zero. 

Example 13.2 Consider the dynamical system which is governed by the di�er-
ential equation 

x_ � ;g(x) 

where g(x) has the form given in Figure 13.4. Clearly the origin is an equilibrium 

point. If we de�ne a function Z x 

V (x) � g(y)dy 

0 

then it is clear that V (x) is locally positive de�nite (lpd) and 

_V (x) � ;g(x)2 

which is locally negative de�nite (lnd). This implies that x � 0 is an asymptotically 

stable equilibrium point. 
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Figure 13.4: Graphical Description of g(x) 

Lyapunov Theorem for Global Asymptotic Stability 

The region in the state space for which our earlier results hold is determined by the region 

over which V (x) serves as a Lyapunov function. It is of special interest to determine the 

\basin of attraction" of an asymptotically stable equilibrium point, i.e. the set of initial 

conditions whose subsequent trajectories end up at this equilibrium point. An equilibrium 

point is globally asymptotically stable (or asymptotically stable \in the large") if its basin of 

attraction is the entire state space. 

If a function V (x) is positive de�nite on the entire state space, and has the additional 

_property that jV (x)j % 1 as kxk % 1, and if its derivative V is negative de�nite on the 

entire state space, then the equilibrium point at the origin is globally asymptotically stable. 

We omit the proof of this result. Other versions of such results can be stated, but are also 

omitted. 

Example 13.3 

Consider the nth-order system 

x_ � ;C(x) 

with the property that C(0) � 0 and x0C(x) � 0 if x � 0. 6 Convince yourself that 

the unique equilibrium point of the system is at 0. Now consider the candidate 

Lyapunov function 

V (x) � x 

0 x 

which satis�es all the desired properties, including jV (x)j % 1 as kxk % 1. 

Evaluating its derivative along trajectories, we get 

_ 

0 � 0 V (x) � 2x x_ � ;2x 

0C(x) � 0 for x 6
Hence, the system is globally asymptotically stable. 



Example 13.4 Consider the following dynamical system 

x_ 1 

� ;x1 

+ 4	x2 

x_ 2 

� ;x1 

; x32: 

The only equlibrium point for this system is the origin x � 0. To investigate the 

stability of the origin let us propose a quadratic Lyapunov function V � x21 

+ ax22, 

where a is a positive constant to be determined. It is clear that V is positive 

de�nite on the entire state space R
2 . In addition, V is radially unbounded, that 

is it satis�es jV (x)j % 1 as kxk % 1. The derivative of V along the trajectories 

of the system is given by " # h i 

_V � 2x1 

2ax2 

;x1 

+ 4x
3
2 

;x1 

; x2 

� ;2x 

2 + (8 ; 2a)x1x2 

; 2ax42:1 

If we choose a � 4 then we can eliminate the cross term x1x2, and the derivative 

of V becomes 

V_ � ;2x21 

; 8x42� 

which is clearly a negative de�nite function on the entire state space. Therefore 

we conclude that x � 0 is a globally asymptotically stable equilibrium point. 

Example 13.5 A highly studied example in the area of dynamical systems and 

chaos is the famous Lorenz system, which is a nonlinear system that evolves in R
3 

whose equations are given by 

x_ � �(y ; x) 

y_ � rx ; y ; xz 

z_ � xy ; bz� 

where �, r and b are positive constants. This system of equations provides an 

approximate model of a horizontal �uid layer that is heated from below. The 

warmer �uid from the bottom rises and thus causes convection currents. This 

approximates what happens in the atmosphere. Under intense heating this model 

exhibits complex dynamical behaviour. However, in this example we would like to 

analyze the stability of the origin under the condition r � 1, which is known not to 

lead to complex behaviour. Le us de�ne V � �1x
2 +�2y

2 +�3z
2, where �1, �2, and 

�3 

are positive constants to be determined. It is clear that V is positive de�nite 

on R
3 and is radially unbounded. The derivative of V along the trajectories of the 

system is given by 2 3 h i 

�(y ; x)6 7 _V � 2�1x	 2�2y 2�3z 4
 

rx ; y ; xz 5
 

xy ; bz 



�	 ;2�1�x2 ; 2�2y 

2 ; 2�3bz
2 

+xy(2�1� + 2r�2) + (2�3 

; 2�2)xyz: 

If we c hoose �2 

� �3 

� 1 and �1 

� � 

1 then the V_ becomes �	 � 

V_ � ;2 x 

2 + y 

2 + 2bz2 ; (1 + r)xy "� �2 

� � # 

� ;2 x ; 

1
(1 + r)y + 1 ; (

1 + r 

)2 y 

2 + bz2 : 

2	 2 

_Since 0 � r � 1 it follows that 0 � 

1+r � 1 and therefore V is negative de�nite on 2 

the entire state space R
3 . This implies that the origin is globally asymptotically 

stable. 

Example 13.6 (Pendulum) 

The dynamic equation of a pendulum comprising a mass M at the end of a rigid 

but massless rod of length R is 

MR��+ Mg sin � � 0 

where � is the angle made with the downward direction, and g is the acceleration 

_due to gravity. To put the system in state-space form, let x1 

� �, and x2 

� �� 

then 

x_1 

� x2 

x_2 

� ; 

g 

sin x1
R 

Take as a candidate Lyapunov function the total energy in the system. Then 

V (x) � 

1 

MR2 x2
2 + MgR(1 ; cos x1) � kinetic + potential 

2 " # 

_	

dV 2 

x2V � 

dx 

f(x) � [MgR sin x1 

MR x2] ; 

g sin x1R 

�	 0 

Hence, V is a Lyapunov function and the system is stable i.s.L. We cannot conclude 

asymptotic stability with this analysis.
 

Consider now adding a damping torque proportional to the velocity, so that the
 

state-space description becomes
 

x_1 

� x2 

x_2 

� ;Dx2 

; 

g 

sin x1
R 



_ 
_ 

With this change, but the same V as before, we �nd
 

V_ � ;DMR2 x 

2
2 

� 0:
 

From this we can conclude stability i.s.L. We still cannot directly conclude asymp-
totic stability. Notice however that V � 0 ) � � 0. Under this condition, 

�� � ;(g�R) sin �: Hence, �� 6� 0 if � 6� k� for integer k, i.e. if the pendulum is not 

vertically down or vertically up. This implies that, unless we are at the bottom or 

top with zero velocity, we shall have �� � 0 when 6 V_ � 0, so �_ will not remain at 

0, and hence the Lyapunov function will begin to decrease again. The only place 

the system can end up, therefore, is with zero velocity, hanging vertically down or 

standing vertically up, i.e. at one of the two equilibria. The formal proof of this 

result in the general case (\LaSalle's invariant set theorem") is beyond the scope 

of this course. 

The conclusion of local asymptotic stability can also be obtained directly through 

an alternative choice of Lyapunov function. Consider the Lyapunov function can-
didate 

V (x) � 

1 

x22 

+ 

1
(x1 

+ x2)
2 + 2(1 ; cos x1): 

2 2
 

It follows that
 

V_ � ;(x22 


 + x1 

sin x1) � ;; (�_ 

2 + � sin �) � 0: 

Also, �_ 

2 + � sin � � 0 ) �_ 

2 � 0� � sin � � 0 ) � � 0� � 

_ � 0: Hence, V_ is strictly 

negative in a small neighborhood around 0. This proves asymptotic stability. 

Discrete-Time Systems 

Essentially identical results hold for the system 

x(k + 1) � f(x(k)) (13.9) 

provided we interpret V_ as 

4 _V (x) � V (f(x)) ; V (x) � 

i.e.	 as 

V (next state) ; V (present state) 

Example 13.7 (DT System) 

Consider the system
 

x2(k)
 

x1(k + 1) � 21 + x2(k) 

x1(k) 

x2(k + 1) � 

1 + x22(k) 



which has its only equilibrium at the origin. If we choose the quadratic Lyapunov 

function 

V (x) � x 

2
1 + x 

2
2 

we �nd � � 

1 _V (x(k)) � V (x(k))
[1 + x22(k)]

2 

; 1 � 0


from which we can conclude that the equilibrium point is stable i.s.L. In fact, 

examining the above relations more carefully (in the same style as we did for the 

pendulum with damping), it is possible to conclude that the equilibrium point is 

actually globally asymptotically stable. 

Notes 

The system in Example 2 is taken from the eminently readable text by F. Verhulst, Nonlinear 

Di�erential Equations and Dynamical Systems, Springer-Verlag, 1990. 



Exercises 

Exercise 13.1 Consider the horizontal motion of a particle of unit mass sliding under the in�uence 

of gravity on a frictionless wire. It can be shown that, if the wire is bent so that its height h is given 

by h(x) � V�(x), then a state-space model for the motion is given by 

x_ � z 

d 

z_ � ; V�(x)� 

dx 

Suppose V�(x) � x4 ; �x2 . 

(a) Verify that the above model has (z� x) � (0r 

� 0) as equilibrium point for any � in the interval � � 

� ;1 � � � 1, and it also has (z� x) � 0� � as equilibrium points when � is in the interval 

2
 

0 � � � 1.
 

(b)	 Verify that the linearized model about any of the equilibrium points is neither asymptotically 

stable nor unstable for any � in the interval ;1 � � � 1. 

Exercise 13.2 Consider the dynamic system described below: 

y�+ a1y_ + a2y + cy 

2 � u + u�_ 

where y is the output and u is the input. 

(a) Obtain a state-space realization of dimension 2 that describes the above system. 

(b) If a1 

� 3� a2 

� 2� c � 2, show that the system is asymptotically stable at the origin. 

(c)	 Find a region (a disc of non-zero radius) around the origin such that every trajectory, with an 

initial state starting in this region, converges to zero as t approaches in�nity. This is known as 

a region of attraction. 

Exercise 13.3 Consider the system 

dP (x) 

x_ (t) � ; 

dx 

where P (x) has continuous �rst partial derivatives. The function P (x) is referred to as the potential 

function of the system, and the system is said to be a gradient system. Let � be an isolated localx 

minimum of P (x), i.e. P (x�) � P (x) for 0 � kx ; x�k � r, some r. 

(a) Show that �x is an equilibrium point of the gradient system. 



(b) Use the candidate Lyapunov function 

V (x) � P (x) ; P (x�) 

to try and establish that �x is an asymptotically stable equilibrium point. 

Exercise 13.4 The objective of this problem is to analyze the convergence of the gradient algorithm 

for �nding a local minimum of a function. Let f : R
n ! R and assume that x� is a local minimum� i.e., 

f(x�) � f(x) for all x close enough but not equal to x� . Assume that f is continuously di�erentiable. 

Let gT : R ! R
n be the gradient of f : 

T 

@g @g g � ( @x 

: : : @xn 

) : 

1 

It follows from elementary Calculus that g(x�) � 0. 

If one has a good estimate of x�, then it is argued that the solution to the dynamic system: 

x_ � ;g(x)	 (13.10) 

with x(0) close to x� will give x(t) such that 

lim x(t) � x 

�: 

t!1 

(a)	 Use Lyapunov stability analysis methods to give a precise statement and a proof of the above 

argument. 

(b) System 13.10 is usually solved numerically by the discrete-time system 

x(k +	 1) � x(k) ; �(xk)g(xk)� (13.11) 

where �(xk) is some function from R
n ! R. In certain situations, � can be chosen as a constant 

function, but this choice is not always good. Use Lyapunov stability analysis methods for 

discrete-time systems to give a possible choice for �(xk) so that 

lim x(k + 1) � x 

�: 

k!1 

(c) Analyze directly the gradient algorithm for the function 

1 

f(x) � x 

T Qx� Q Symmetric, Positive De�nite: 

2 

Show directly that system 13.10 converges to zero (� x�). Also, show that � in system 13.11 

can be chosen as a real constant, and give tight bounds on this choice. 

Exercise 13.5 (a) Show that any (possibly complex) square matrix M can be written uniquely as 

the sum of a Hermitian matrix H and a skew-Hermitian matrix S, i.e. H 0 � H and S0 � ;S. 

(Hint: Work with combinations of M and M 0.) Note that if M is real, then this decomposition 

expresses the matrix as the sum of a symmetric and skew-symmetric matrix. 



(b)	 With M , H , and S as above, show that the real part of the quadratic form x0Mx equals x0Hx, 

and the imaginary part of x0Mx equals x0Sx. (It follows that if M and x are real, then x0Mx � 

x0Hx.) 

(c)	 Let V (x) � x0Mx for real M and x. Using the standard de�nition of dV (x)�dx as a Jacobian 

matrix | actually just a row vector in this case | whose jth entry is @V (x)�@xj 

, show that 

dV (x) 

� 2x 

0H 

dx 

where H is the symmetric part of M , as de�ned in part (a). 

(d)	 Show that a Hermitian matrix always has real eigenvalues, and that the eigenvectors associated 

with distinct eigenvalues are orthogonal to each other. 

Exercise 13.6 Consider the (real) continuous-time LTI system x_ (t) � Ax(t). 

(a) Suppose the (continuous-time) Lyapunov equation 

PA + A0P � ;I	 (3:1) 

has a symmetric, positive de�nite solution P . Note that (3.1) can be written as a linear system 

of equations in the entries of P , so solving it is in principle straightforward� good numerical 

algorithms exist. 

Show that the function V (x) � x0Px serves as a Lyapunov function, and use it to deduce the 

global asymptotic stability of the equilibrium point of the LTI system above, i.e. to deduce that 

the eigenvalues of A are in the open left-half plane. (The result of Exercise 13.5 will be helpful 

_in computing V (x).) 

What part (a) shows is that the existence of a symmetric, positive de�nite solution of (3.1) is 

su�cient to conclude that the given LTI system is asymptotically stable. The existence of such 

a solution turns out to also be necessary, as we show in what follows. [Instead of ;I on the 

right side of (3.1), we could have had ;Q for any positive de�nite matrix Q. It would still be 

true that the system is asymptotically stable if and only if the solution P is symmetric, positive 

de�nite. We leave you to modify the arguments here to handle this case.] 

(b) Suppose the LTI system above is asymptotically stable. Now de�ne Z 1 

A0 t AtP � R(t)dt � R(t) � e e	 (3:2) 

0 

The reason the integral exists is that the system is asymptotically stable | explain this in more 

detail! Show that P is symmetric and positive de�nite, and that it is the unique solution of the 

Lyapunov equation (3.1). You will �nd it helpful to note that Z 1 dR(t)
R(1) ; R(0) � dt 

dt0 



The results of this problem show that one can decide whether a matrix A has all its eigenvalues 

in the open left-half plane without solving for all its eigenvalues. We only need to test for the 

positive de�niteness of the solution of the linear system of equations (3.1). This can be simpler. 

Exercise 13.7 This problem uses Lyapunov's direct method to justify a key claim of his indirect 

method: if the linearized model at an equilibrium point is asymptotically stable, then this equilibrium 

point of the nonlinear system is asymptotically stable. (We shall actually only consider an equilibrium 

point at the origin, but the approach can be applied to any equilibrium point, after an appropriate 

change of variables.) 

Consider the time-invariant continuous-time nonlinear system given by 

x_ (t) � Ax(t) + h(x(t))	 (4:1) 

where A has all its eigenvalues in the open left-half plane, and h(:) represents \higher-order terms", in 

the sense that kh(x)k�kxk ! 0 as kxk ! 0. 

(a)	 Show that the origin is an equilibrium point of the system (4.1), and that the linearized model at 

the origin is just x_ (t) � Ax(t). 

(b) Let P be the positive de�nite solution of the Lyapunov equation in (3.1). Show that V (x) � x0Px 

quali�es as a candidate Lyapunov function for testing the stability of the equilibrium point at 

_the origin in the system (4.1). Determine an expression for V (x), the rate of change of V (x) 

along trajectories of (4.1) 

0(c)	 Using the fact that x x � kxk2, and that kPh(x)k � kP kkh(x)k, how small a value (in terms of 

kP k) of the ratio kh(x)k�kxk will allow you to conclude that V_ (x(t)) � 0 for x(t) � 0� 6 Now 

argue that you can indeed limit kh(x)k�kxk to this small a value by choosing a small enough 

_ � 0. By neighborhood of the equilibrium. In this neighborhood, therefore, V (x(t)) � 0 for x(t) 6
Lyapunov's direct method, this implies asymptotic stability of the equilibrium point. 

Exercise 13.8 For the discrete-time LTI system x(k + 1) � Ax(k), let V (x) � x0Px, where P is a 

symmetric, positive de�nite matrix. What condition will guarantee that V (x) is a Lyapunov function 

for this system� What condition involving A and P will guarantee asymptotic stability of the system� 

(Express your answers in terms of the positive semide�niteness and de�niteness of a matrix.) 
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