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Chapter 10 

Discrete-Time Linear State-Space 

Models 

10.1 Introduction 

In the previous chapters we showed how dynamic models arise, and studied some special 

characteristics that they may possess. We focused on state-space models and their properties, 

presenting several examples. In this chapter we will continue the study of state-space models, 

concentrating on solutions and properties of DT linear state-space models, both time-varying 

and time-invariant. 

10.2 Time-Varying Linear Models 

A general nth-order discrete-time linear state-space description takes the following form: 

x(k + 1) � A(k)x(k) + B(k)u(k) 

y(k) � C(k)x(k) + D(k)u(k) � (10.1) 

where x(k) 2 R
n . Given the initial condition x(0) and the input sequence u(k), we would like 

to �nd the state sequence or state trajectory x(k) as well as the output sequence y(k). 

Undriven Response 

First let us consider the undriven response, that is the response when u(k) � 0 for all k 2 Z. 

The state evolution equation then reduces to 

x(k + 1) � A(k)x(k) : (10.2) 



The response can be derived directly from (10.2) by simply iterating forward: 

x(1) � A(0)x(0)


x(2) � A(1)x(1)


� A(1)A(0)x(0) 

x(k) � A(k ; 1)A(k ; 2) : : : A(1)A(0)x(0) (10.3) 

Motivated by (10.3), we de�ne the state transition matrix, which relates the state of the 

undriven system at time k to the state at an earlier time `: 

x(k) � �(k� `)x(`) k � ` :	 (10.4) 

The form of the matrix follows directly from (10.3): (
�(k� `) �	

A(k ; 1)A(k ; 2) � � � A(`) � k � ` � 0 

: (10.5)
I � k � ` 

If A(k ;1), A(k ;2),. . . , A(`) are all invertible, then one could use the state transition matrix 

to obtain x(k) from x(`) even when k � `, but we shall typically assume k � ` when writing 

�(k� `). 

The following properties of the discrete-time state transition matrix are worth highlight-
ing: 

�(k� k) � I 

x(k) � �(k� 0)x(0) 

�(k + 1� `) � A(k)�(k� `): (10.6) 

Example 10.1 (A Su�cient Condition for Asymptotic Stability) 

The linear system (10.1) is termed asymptotically stable if, with u(k) � 0, and for 

all x(0), we have x(n) ! 0 (by which we mean kx(n)k ! 0) as n ! 1. Since 

u(k) � 0, we are in e�ect dealing with (10.2). 

Suppose 

kA(k)k � � � 1 (10.7) 

for all k, where the norm is any submultiplicative norm and � is a constant (inde-
pendent of k) that is less than 1. Then 

k�(n� 0)k � �n 

and hence
 

kx(n)k � �nkx(0)k
 

so x(n) ! 0 as n ! 1, no matter what x(0) is. Hence (10.7) constitutes a 

su�cient condition (though a weak one, as we'll see) for asymptotic stability of 

(10.1). 



Example 10.2 (\Lifting" a Periodic Model to an LTI Model) 

Consider an undriven linear, periodically varying (LPV) model in state-space form. 

This is a system of the form (10.2) for which there is a smallest positive integer 

N such that A(k + N) � A(k) for all k� thus N is the period of the system. (If 

N � 1, the system is actually LTI, so the cases of interest here are really those 

with N � 2.) Now focus on the state vector x(mN) for integer m, i.e., the state 

of the LPV system sampled regularly once every period. Evidently ih 

x(mN + N) � A(N ; 1)A(N ; 2) � � � A(0) x(mN) 

� �(N� 0) x(mN) (10.8) 

The sampled state thus admits an LTI state-space model. The process of con-
structing this sampled model for an LPV system is referred to as lifting. 

Driven Response 

Now let us consider the driven system, i.e., u(k) 6 Referring back to � 0 for at least some k. 

(10.1), we have 

x(1) � A(0)x(0) + B(0)u(0)


x(2) � A(1)x(1) + B(1)u(1)


� A(1)A(0)x(0) + A(1)B(0)u(0) + B(1)u(1) (10.9) 

which leads to 

k 1;X
x(k) � �(k� 0)x(0) + �(k� ` + 1)B(`)u(`) 

`�0 

� �(k� 0)x(0) + ;(k� 0)U(k� 0) � (10.10) 

where 10 

ih 

;(k� 0) � �(k� 1)B(0) j �(k� 2)B(1) j � � � j B(k ; 1) � U(k� 0) � 

BBBB@


u(0) 

u(1) 

. . . 

CCCCA


(10.11)
 


 
 

u(k ; 1) 

What (10.10) shows is that the solution of the system over k steps has the same form as 

the solution over one step, which is given in the �rst equation of (10.1). Also note that the 

system response is divided into two terms: one depends only on the initial state x(0) and the 

other depends only on the input. These terms are respectively called the natural or unforced 

or zero-input response, and the zero-state response. Note also that the zero-state response 

has a form that is reminiscent of a convolution sum� this form is sometimes referred to as a 

superposition sum. 



If (10.10) had been simply claimed as a solution, without any sort of derivation, then its 

validity could be veri�ed by substituting it back into the system equations: 

kX 

x(k + 1) � �(k + 1� 0)x(0) + �(k + 1� ` + 1)B(`)u(`) 

`�0 

k;1X 

� �(k + 1� 0)x(0) + �(k + 1� ` + 1)B(`)u(`) + B(k)u(k) 

`�0 " #
k;1X 

� A(k) �(k� 0)x(0) + �(k� ` + 1)B(`)u(`) + B(k)u(k) 

`�0 

� A(k)x(k) + B(k)u(k) : (10.12) 

Clearly, (10.12) satis�es the system equations (10.1). It remains to be veri�ed that the pro-
posed solution matches the initial state at k � 0. We have 

x(0) � �(0� 0)x(0) � x(0) � (10.13) 

which completes the check. 

If Y(k� 0) is de�ned similarly to U(k� 0), then following the sort of derivation that led to 

(10.10), we can establish that 

Y(k� 0) � �(k� 0)x(0) +�(k� 0)U(k� 0) (10.14) 

for appropriately de�ned matrices �(k� 0) and �(k� 0). We leave you to work out the details. 

Once again, (10.14) for the output over k steps has the same form as the expression for the 

output at a single step, which is given in the second equation of (10.1). 

10.3 Linear Time-Invariant Models 

In the case of a time-invariant linear discrete-time system, the solutions can be simpli�ed 

considerably. We �rst examine a direct time-domain solution, then compare this with a 

transform-domain solution, and �nally return to the time domain, but in modal coordinates. 

Direct Time-Domain Solution 

For a linear time-invariant system, observe that )
A(k) � A 

for all k � 0� (10.15)
B(k) � B 

where A and B are now constant matrices. Thus 

�(k� `) � A(k ; 1) : : : A(`) � Ak;` � k � ` (10.16) 



so that, substituting this back into (10.10), we are left with 

k;1 

x(k) � Ak x(0) + Ak;`;1Bu(`) 

X 

`�0 10 

u(0) 

u(1) 

. . 

ih 

� Ak x(0) + Ak;1B j Ak;2B j � � � j B 

BBBB@


CCCCA


(10.17)
 


 . 
 

u(k ; 1) 

Note that the zero-state response in this case exactly corresponds to a convolution sum. 

Similar expressions can be worked out for the outputs, by simplifying (10.14)� we leave the 

details to you. 

Transform-Domain Solution 

We know from earlier experience with dynamic linear time-invariant systems that the use of 

appropriate transform methods can reduce the solution of such a system to the solution of 

algebraic equations. This expectation does indeed hold up here. First recall the de�nition of 

the one-sided Z-transform : 

De�nition 10.1 The one-sided Z-transform, F (z), of the sequence f(k) is given by 

1X
F (z) � z;kf(k) 

k�0 

for all z such that the result of the summation is well de�ned, denoted by the Region of 

Convergence (ROC). 

The sequence f(k) can be a vector or matrix sequence, in which case F (z) is respectively a 

vector or matrix as well. 

It is easy to show that the transform of a sum of two sequences is the sum of the individual 

transforms. Also, scaling a sequence by a constant simply scales the transform by the same 

constant. The following shift property of the one-sided transform is critical, and not hard to 

Z
establish. Suppose that f(k) �! F (z). Then 

1. 

g(k) � 

(
 

f(k ; 1) � k � 1
�) G(z) � z;1F (z): 

0 � k � 0 

2. 

g(k) � f(k + 1) �) G(z) � z [F (z) ; f(0)] : 



Convolution is an important operation that can be de�ned on two sequences f(k), g(k) as 

kX 

f � g(k) � g(k ; m)f(m)� 

m�0 

whenever the dimensions of f and g are compatible so that the products are de�ned. The Z 

transform of a convolutions of two sequences satisfy 

1X 

Z(f � g) � z;kf � g(k) 

k�0 �	 ! X1 kX 

� z;k f(k ; m)g(m) 

k�0 

m�0 

1	 1X X 

� z;kf(k ; m)g(m) 

m�0 k�m 

1	 1X X 

�	 z;(k+m)f(k)g(m) 

m�0 k�0 � !1 1X X 

�	 z;m z;kf(k) g(m) 

m�0 k�0 

�	 F (z)G(z): 

Now, given the state-space model (10.1), we can take transforms on both sides of the 

equations there. Using the transform properties just described, we get 

zX(z) ; zx(0) � AX(z) + BU(z) (10.18) 

Y (z) � CX(z) + DU(z): (10.19) 

This is solved to yield 

X(z) � z(zI ; A);1 x(0) + (zI ; A);1BU(z)h	 i 

Y (z) � zC(zI ; A);1 x(0) + C(zI ; A);1B + D U(z) (10.20) | {z }
Transfer Function 

To correlate the transform-domain solutions in the above expressions with the time-
domain expressions in (10.10) and (10.14), it is helpful to note that 

(zI ; A);1 � z;1I + z;2A + z;3A2 + � � �	 (10.21) 

as may be veri�ed by multiplying both sides by (zI ; A). The region of convergence for the 

series on the right is all values of z outside of some su�ciently large circle in the complex 

plane. What this series establishes, on comparison with the de�nition of the Z-transform, is 


 



that the inverse transform of z(zI ; A);1 is the matrix sequence whose value at time k is Ak 

for k � 0� the sequence is 0 for time instants k � 0. That is we can write � � Z
I� A� A2� A3� A4� : : : �! z(zI ; A);1 � � 

3 

Z
0� I� A� A2� A � : : : �! (zI ; A);1: 

Also since the inverse transform of a product such as (zI ; A);1BU(z) is the convolution of 

the sequences whose transforms are (zI ; A);1B and U(z) respectively, we get � � 

3 

Z 

x(0)� Ax(0)� A2 x(0)� A x(0)� : : : �! z(zI ; A);1 x(0) � � 

3 

Z
0� B� AB� A2B�A B� : : : � (u(0)� u(1)� u(2)� u(3)� : : :) �! (zI ; A);1BU(z): 

Putting the above two pieces together, the parallel between the time-domain expressions and 

the transform-domain expressions in (10.20) should be clear. 


 



Exercises 

Exercise 10.1 (a) Give an example of a nonzero matrix whose eigenvalues are all 0. 

(b)	 Show that Ak � 0 for some �nite positive power k if and only if all eigenvalues of A equal 0. Such 

a matrix is termed nilpotent. Argue that An � 0 for a nilpotent matrix of size n. 

(c)	 If the sizes of the Jordan blocks of the nilpotent matrix A are n1 

� n2 

� : : : � nq, what is the 

smallest value of k for which Ak � 0� 

(d)	 For an arbitrary square matrix A, what is the smallest value of k for which the range of Ak+1 

equals that of Ak� (Hint: Your answer can be stated in terms of the sizes of particular Jordan 

blocks of A.) 

Exercise 10.2 Consider the periodically varying system in Problem 7.4. Find the general form of 

the solution. 

Exercise 10.3 Gambler's Ruin 

Consider gambling against a bank of capital A1 

in the following way: a coin is �iped, if the 

outcome is heads, the bank pays one dollar to the player, and if the outcome is tails, the player payes 

one dollar to the bank. Suppose the probability of a head is equal to p, the capital of the player is A2, 

and the game continues until one party looses all of their capital. Calculate the probability of breaking 

the bank. 
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