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Chapter 8 

Simulation/Realization
 

8.1 Introduction 

Given an nth-order state-space description of the form 

x_ (t) � f (x(t)� u(t)� t) (state evolution equations) (8.1) 

y(t) � g (x(t)� u(t)� t) (instantaneous output equations) : (8.2) 

(which may be CT or DT, depending on how we interpret the symbol x_ ), how do we simulate 

the model, i.e., how do we implement it or realize it in hardware or software� In the DT 

case, where x_ (t) � x(t + 1), this is easy if we have available: (i) storage registers that can be 

updated at each time step (or \clock cycle") | these will store the state variables� and (ii) 

a means of evaluating the functions f( � ) and g( � ) that appear in the state-space description 

| in the linear case, all that we need for this are multipliers and adders. A straightforward 

realization is then obtained as shown in the �gure below. The storage registers are labeled 

D for (one-step) delay, because the output of the block represents the data currently stored 

in the register while the input of such a block represents the data waiting to be read into the 

register at the next clock pulse. In the CT case, where x_ (t) � dx(t)�dt, the only di�erence is 

that the delay elements are replaced by integrators. The outputs of the integrators are then 

the state variables. 

8.2 Realization from I/O Representations 

In this section, we will describe how a state space realization can be obtained for a causal 

input-output dynamic system described in terms of convolution. 

8.2.1 Convolution with an Exponential 

Consider a causal DT LTI system with impulse response h[n] (which is 0 for n � 0): 



u[t] 

- x[t + 1] - x[t] - y[t]-f(:� :) D g(:� :) 

6 6 

Figure 8.1: Simulation Diagram 

nX 

y[n] � h[n ; k]u[k] 

;1 � 

n;1 �X 

� h[n ; k]u[k] + h[0]u[n] (8.3) 

;1 

The �rst term above, namely 

n;1X 

x[n] � h[n ; k]u[k] (8.4) 

;1 

represents the e�ect of the past on the present. This expression shows that, in general (i.e. 

if h[n] has no special form), the number x[n] has to be recomputed from scratch for each n. 

When we move from n to n + 1, none of the past input, i.e. u[k] for k � n, can be discarded, 

because all of the past will again be needed to compute x[n + 1]. In other words, the memory 

of the system is in�nite. 

Now look at an instance where special structure in h[n] makes the situation much better. 

Suppose 

h[n] � �n for n � 0, and 0 otherwise (8.5) 

Then 

n;1X 

x[n] � �n;k u[k] (8.6) 

;1 

and 

nX 

x[n + 1] � �n+1;k u[k] 

;1 � 

n;1 �X 

� � �n;k u[k] + �u[n] 

;1 

� �x[n] + �u[n] (8.7) 



- -

(You will �nd it instructive to graphically represent the convolutions that are involved here, in 

order to understand more visually why the relationship (8.7) holds.) Gathering (8.3) and (8.6) 

with (8.7), we obtain a pair of equations that together constitute a state-space description for 

this system: 

x[n + 1] � �x[n] + �u[n] (8.8) 

y[n] � x[n] + u[n] (8.9) 

To realize this model in hardware, or to simulate it, we can use a delay-adder-gain system 

that is obtained as follows. We start with a delay element, whose output will be x[n] when its 

input is x[n +1]. Now the state evolution equation tells us how to combine the present output 

of the delay element, x[n], with the present input to the system, u[n], in order to obtain the 

present input to the delay element, x[n + 1]. This leads to the following block diagram, in 

which we have used the output equation to determine how to obtain y[n] from the present 

state and input of the system: 

u[n] 

- m - - y[n] 

6 

x[n] x[n + 1]
� � 

� D 

8.2.2 Convolution with a Sum of Exponentials 

Consider a more complicated causal impulse response than the previous example, namely 

h[n] � �0�[n] + ( �1�1 

n + �2�
n 

2 

+ � � � + �L�
n
L 

) (8.10) 

with the �i 

being constants. The following block diagram shows that this system can be 

considered as being obtained through the parallel interconnection of causal subsystems that 

are as simple as the one treated earlier, plus a direct feedthrough of the input through the 

gain �0 

(each block is labeled with its impulse response, with causality implying that these 

responses are 0 for n � 0): 

�0�[n] 

B 

B
 

u[n] 

B y[n]
 

- - �1�
n - - BBNi -
1 

���
� 


 � 

� 

- �L�
n
L 

- � 

...




Motivated by the above structure and the treatment of the earlier, let us de�ne a state 

variable for each of the L subsystems: 

n;1 

xi[n] � �ni 

;k u[k] � i � 1� 2� : : : � L (8.11) 

With this, we immediately obtain the following state-evolution equations for the subsystems: 

xi[n + 1] � �ixi[n] + �iu[n] � i � 1� 2� : : : � L (8.12) 

Also, after a little algebra, we directly �nd 

X 

;1 

LX 

y[n] � �1x1[n] + �2x2[n] + � � � + �LxL[n] + ( �i) u[n] (8.13) 

0 

We have thus arrived at an Lth-order state-space description of the given system. To write 

the above state-space description in matrix form, de�ne the state vector at time n to be 0
 1
 

x1[n] 

x[n] � 

BBBB@


x2[n] 

. . 

CCCCA


(8.14)



 . 
 

xL[n] 

Also de�ne the diagonal matrix A, column vector b, and row vector c as follows: 1010 

�1 

0 0 � � � 0 0 �1 

A �


BBBB@
�


0 �2 

0 � � � 0 0 

. . . . 

. .
 . . . . . .
 . . . 

. . .
 

CCCCA


� b � 

BBBB@


�2 

.
 .
 .
 

CCCCA


(8.15)



 
 
 

0 0 0 � � � 0 �L 

�L 

c 


 

� �1 

�2 

� � � � � � � � � �L 

�
 

(8.16)


Then our state-space model takes the desired matrix form, as you can easily verify: 

x[n + 1] � Ax[n] + bu[n] (8.17) 

y[n] � cx[n] + du[n] (8.18) 

where 

LX 

d � �i 

(8.19) 

0 



8.3 Realization from an LTI Di�erential/Di�erence equation 

In this section, we describe how a realization can be obtained from a di�erence or a di�erential 

equation. We begin with an example. 

Example 8.1 (State-Space Models for an LTI Di�erence Equation) 

Let us examine some ways of representing the following input-output di�erence 

equation in state-space form: 

y[n] + a1y[n ; 1] + a2y[n ; 2] � b1u[n ; 1] + b2u[n ; 2] (8.20) 

For a �rst attempt, consider using as state vector the quantity 10 

y[n ; 1] 

y[n ; 2] 


 u[n ; 1] 

x[n] � 

BBB@


CCCA


(8.21)



 

u[n ; 2] 

The corresponding 4th-order state-space model would take the form 010 10
 1
0
1
BBB@
y[n] ;a1 

;a2 

b1 

b2 

� 

y[n ; 1] 0
BBB@


CCCA


BBB@
0 

CCCA 

CCCA


+
 

BBB@


CCCA


y[n ; 1] 1 0 0 0
 y[n ; 2] 

u[n ; 2] 

0
 

1
 

x[n + 1] � u[n]
u[n] 0 0 0 0
 u[n ; 1]
 
 
 
 
 
 

u[n ; 1] 0 0 1 0
 0
 1 CCCA


BBB@


y[n ; 1] 

y[n ; 2] 


 u[n ; 1] 

u[n ; 2] 

�� 

y[n] � ;a1 

;a2 

b1 

b2 

+
 ( 0 ) u[n](8.22) 

If we are somewhat more careful about our choice of state variables, it is possible 

to get more economical models. For a 3rd-order model, suppose we pick as state 

vector 10 

y[n]B@


CA


x[n] � y[n ; 1] (8.23)



 
 

u[n ; 1] 

The corresponding 3rd-order state-space model takes the form 010 10
 1
0
1


y[n + 1] ;a1 

;a2 

b2 

1 0 0
 

0 0 0
 

y[n] b1 B@


CA


�
 

B@


B@ 

CA 

CA


+
 

B@


CA


x[n + 1] � y[n] y[n ; 1] 0
 u[n]

 
 
 
 
 
 

u[n] 1
1 CA 

u[n ; 1] 0
 

y[n]�
 �
 

y[n] � 1 0 0
B@


y[n ; 1] + ( 0 ) u[n] (8.24)

 

u[n ; 1] 



A still more clever/devious choice of state variables yields a 2nd-order state-space 

model. For this, pick � ! 

y[n]
x[n] � (8.25);a2y[n ; 1] + b2u[n ; 1] 

The corresponding 2nd-order state-space model takes the form � ! � !� ! � ! 

y[n + 1] 

� 

;a1 

1 y[n]
+ 

b1 u[n];a2y[n] + b2u[n] ;a2 

0 ;a2y[n ; 1] + b2u[n ; 1] b2 � ! � � y[n]
y[n] � 1 0 + ( 0 ) u[n] (8.26);a2y[n ; 1] + b2u[n ; 1] 

It turns out to be impossible in general to get a state-space description of order 

lower than 2 in this case. This should not be surprising, in view of the fact that we 

started with a 2nd-order di�erence equation, which we know (from earlier courses!) 

requires two initial conditions in order to solve forwards in time. Notice how, in 

each of the above cases, we have incorporated the information contained in the 

original di�erence equation that we started with. 

This example was built around a second-order di�erence equation, but has natural 

generalizations to the nth-order case, and natural parallels in the case of CT 

di�erential equations. 

Next, we will present two realizations of an nth-Order LTI di�erential equation. While 

realizations are not unique, these two have certain nice properties that will be discussed in 

the future. 

8.3.1 Observability Canonical Form 

Suppose we are given the LTI di�erential equation 

y(n) + an;1y(n;1) + � � � + a0y � b0u + b1u_ + � � � + bn;1u(n;1)� 

which can be rearranged as 

y(n) � ( bn;1u(n;1) ; bn;1y(n;1)) + ( bn;2u(n;2) ; an;2y(n;2)) + � � � + (b0u ; a0y): 

Integrated n times, this becomes Z Z Z Z Z 

y � (bn;1u ; an;1y) + (bn;2u ; an;2y) + � � � + � � � (b0u ; a0y): (8.27) 

n 

The block diagram given in Figure 8.2 then follows directly from (8.27). This particular 

realization is called the observability canonical form realization | \canonical" in the sense of 
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Z
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Figure 8.2: Observability Canonical Form 

\simple" (but there is actually a strict mathematical de�nition as well), and \observability" 

for reasons that will emerge later in the course. 

We can now read the state equations directly from Figure 8.2, once we recognize that 

the natural state variables are the outputs of the integrators: 

x_ 1 

� ;an;1x1 

+ x2 

+ bn;1u 

x_ 2 

� ;an;2x1 

+ x3 

+ bn;2u 

. . . 

x_ n 

� ;a0x1 

+ b0u 

y � x1: 

If this is written in our usual matrix form, we would have 2
 3
32 66666664


bn;1 

bn;2 

.
 .
 .
 

.
 .



 . 

77777775


;an;1 

1 0 � � � 0 

;an;2 

0 1 � � � 06666664


7777775


. .
A �
 � b �.
 .
. .


1



 
 


 

;a0 

0 � � � 0 b0 ih 

c � 1 0 � � � 0 : 

The matrix A is said to be in companion form, a term used to refer to any one of four matrices 

whose pattern of 0's and 1's is, or resembles, the pattern seen above. The characteristic 

polynomial of such a matrix can be directly read o� from the remaining coe�cients, as we shall 



see when we talk about these polynomials, so this matrix is a \companion" to its characteristic 

polynomial. 

8.3.2 Reachability Canonical Form 

There is a \dual" realization to the one presented in the previous section for the LTI di�erential 

equation 

y(n) + an;1y(n;1) + � � � + a0y � c0u + c1u_ + � � � + cn;1u(n;1): (8.28) 

First, consider a special case of this, namely the di�erential equation 

w(n) + an;1w(n;1) + � � � + a0w � u (8.29) 

To obtain an nth-order state-space realization of the system in 8.29, de�ne 3
2
3
2


wx1 

�
 

6666666664


7777777775


x � 

666666664


777777775


w_ 

w� 

.
.
.


dn;2 w 


 dtn;2 

x2 

x3 

.
.
.



 xn;1 

:
 


 


 

dn;1 wxn dtn;1 

Then it is easy to verify that the following state-space description represents the given model: 2
3
2
 32
 3
2
3


x1 

0 1 0 0 : : : 0 x1 

0 

d 

dt 

666666664


777777775


666666664


666666664


777777775


x2 

x3 

.
 .
 .
 

xn;1 

777777775


+
 

666666664


0 0 1 0 : : : 0
 

0 0 0 1 : : : 0
 

. .
. .
. .


0 0 0 : : : 0 1
 

0


0


x2 

x3 

.
 .
 .
 

xn;1 

�
 u.
.
.


0



 
 
 
 
 
 

;a0(t) ;a1(t) 2 666666664


;a2(t) : : : ;an;2(t) ;an;1(t) xn 

1
xn 3
 

x1 777777775


x2


x3


i
h 

w � 

(The matrix A here is again in one of the companion forms� the two remaining companion 

forms are the transposes of the one here and the transpose of the one in the previous section.) 

Suppose now that we want to realize another special case, namely the di�erential equation 

r(n) + an;1r(n;1) + � � � + a0r � u_ (8.30) 

1 0 0 0 : : : 0
 :
. . . 

xn;1 

xn 

777777775




which is the same equation as (8.29), except that the RHS is u_ rather than u. By linearity, the 

response of (8.30) will r � w_ (t), and this response can be obtained from the above realization 

by simply taking the output to be x2 

rather than x1, since x2 

� w_ � r. 

Superposing special cases of the preceding form, we see that if we have the di�erential 

equation (8.28), with an RHS of 

c0u + c1u_ + � � � + cn;1u(n;1) 

then the above realization su�ces, provided we take the output to be 

y � c0x1 

+ c1x2 

+ � � � + cn;1xn:	 (8.31) 

i.e., we just change the output equation to have h	 i 

c � c0 

c1 

c2 

� � � cn;1 

:	 (8.32) 

A block diagram of the �nal realization is shown below in 8.3. This is called the reachability 

or controllability canonical form. 
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-
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Figure 8.3: Reachability Canonical Form 

Finally, for the obvious DT di�erence equation that is analogous to the CT di�erential 

equation that we used in this example, the same scheme will work, with derivatives replaced 

by di�erences. 



Exercises 

Exercise 8.1 Suppose we wish to realize a two-input di�erential equation of the form 

y(n) + an;1y
(n;1) + � � � + a0y � b01u1 

+ b11u_ 1 

+ � � � + bn;1�1u
(
1 

n;1) 

+ b02u2 

+ b12u_ 2 

+ � � � + bn;1�2u2
(n;1) 

Show how you would modify the observability canonical realization to accomplish this, still using only 

n integrators. 

Exercise 8.2 How would reachability canonical realization be modi�ed if the linear di�erential equa-
tion that we started with was time varying rather than time invariant� 

Exercise 8.3 Show how to modify the reachability canonical realization| but still using only n 

integrators | to obtain a realization of a two-output system of the form 

y1
(n) 

+ an;1y1
(n;1) 

+ � � � + a0y1 

� c10u + c11u_ + � � � + c1�n;1u
(n;1) � 

y2
(n) 

+ an;1y2
(n;1) 

+ � � � + a0y2 

� c20u + c21u_ + � � � + c2�n;1u
(n;1): 

Exercise 8.4 Consider the two-input two-output system: 

y_1 

� y1 

+ �u1 

+ u2 

� 

y_2 

� y2 

+ u1 

+ u2 

(a) Find a realization with the minimum number of states when � 6� 1. 

(b) Find a realization with the minimum number of states when � � 1. 
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