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Chapter 7 

State-Space Models
 

7.1 Introduction 

A central question in dealing with a causal discrete-time (DT) system with input u, output 

y, is the following: 

Given the input at some time n, i.e. given u[n], how much information do we need about 

past inputs, i.e. about u[k] for k � n, in order to determine the present output, namely y[n] � 

The same question can be asked for continuous-time (CT) systems. This question addresses 

the issue of memory in the system. Why is this a central question� Some reasons: 

�	 The answer gives us an idea of the complexity, or number of degrees of freedom, asso-
ciated with the dynamic behavior of the system. The more information we need about 

past inputs in order to determine the present output, the richer the variety of possible 

output behaviors. 

�	 In a control application, the answer to the above question suggests the required degree 

of complexity of the controller, because the controller has to remember enough about 

the past to determine the e�ects of present control actions on the response of the system. 

�	 For a computer algorithm that acts causally on a data stream, the answer to the above 

question suggests how much memory will be needed to run the algorithm. 

We now describe the general structure of state-space models, for which the preceding question 

has an immediate and transparent answer. 



7.2 General Description 

For a causal system with m inputs uj(t) and p outputs yi(t) (hence m + p manifest variables), 

an nth-order state-space description is one that introduces n latent variables x`(t) called state 

variables in order to obtain a particular form for the constraints that de�ne the model. Letting 323232 
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an nth-order state-space description takes the form 

x_ (t) � f (x(t)� u(t)� t) (state evolution equations) (7.1) 

y(t) � g (x(t)� u(t)� t) (instantaneous output equations) : (7.2) 

To save writing the same equations over for both continuous and discrete time, we interpret 

dx(t) + x_ (t) � � t 2 R or R
dt 

for CT systems, and 

x_ (t) � x(t + 1) � t 2 Z or Z
+ 

for DT systems. We will only consider �nite-order (or �nite-dimensional, or lumped) state-
space models, although there is also a rather well developed (but much more subtle and 

technical) theory of in�nite-order (or in�nite-dimensional, or distributed) state-space models. 

DT Models 

The key feature of a state-space description is the following property, which we shall refer to 

as the state property. Given the present state vector (or \state") and present input at time 

t, we can compute: (i) the present output, using (7.2)� and (ii) the next state using (7.1). It 

is easy to see that this puts us in a position to do the same thing at time t + 1, and therefore 

to continue the process over any time interval. Extending this argument, we can make the 

following claim: 

State Property of DT state-Space Models 

Given the initial state x(t0)
 

and input u(t) for t0 

� t � tf
 

(with t0 

and tf 

arbitrary),
 

we can compute the output y(t) for t0 

� t � tf
 

and the state x(t) for t0 

� t � tf 

.
 



Thus, the state at any time t0 

summarizes everything about the past that is relevant to the 

future. Keeping in mind this fact | that the state variables are the memory variables (or, in 

more physical situations, the energy storage variables) of a system | often guides us quickly 

to good choices of state variables in any given context. 

CT Models 

The same state property turns out to hold in the CT case, at least for f( : ) that are well 

behaved enough for the state evolution equations to have a unique solution for all inputs of 

interest and over the entire time axis | these will typically be the only sorts of CT systems 

of interest to us. A demonstration of this claim, and an elucidation of the precise conditions 

under which it holds, would require an excursion into the theory of di�erential equations 

beyond what is appropriate for this course. We can make this result plausible, however, by 

considering the Taylor series approximation � � 

dx(t) 

x(t0 

+ �) � x(t0) + � (7.3)
dt t�t0 

� x(t0) + f (x(t0)� u(t0)� t0) � (7.4) 

where the second equation results from applying the state evolution equation (7.1). This 

suggests that we can approximately compute x(t0 

+ �), given x(t0) and u(t0)� the error in the 

approximation is of order �2, and can therefore be made smaller by making � smaller. For 

su�ciently well behaved f( � ), we can similarly step forwards from t0 

+ � to t0 

+2�, and so on, 

eventually arriving at the �nal time tf 

, taking on the order of �;1 steps in the process. The 

accumulated error at time tf 

is then of order �;1:�2 � �, and can be made arbitrarily small 

by making � su�ciently small. Also note that, once the state at any time is determined and 

the input at that time is known, then the output at that time is immediately given by (7.2), 

even in the CT case. 

The simple-minded Taylor series approximation in (7.4) corresponds to the crudest of 

numerical schemes | the \forward Euler" method | for integrating a system of equations of 

the form (7.1). Far more sophisticated schemes exist (e.g. Runge-Kutta methods, Adams-Gear 

schemes for \sti�" systems that exhibit widely di�ering time scales, etc.), but the forward 

Euler scheme su�ces to make plausible the fact that the state property highlighted above 

applies to CT systems as well as DT ones. 

Example 7.1 RC Circuit 

This example demonstrates a �ne point in the de�nition of a state for CT systems. 

Consider an RC circuit in series with a voltage source u. Using KVL, we get the 

following equation describing the system: 

;u + vR 

+ RCv_C 

� 0: 

It is clear that vC 

de�nes a state for the system as we described before. Does vR 

de�ne a state� If vR(t0) is given, and the input u(t)� t0 

� t � tf 

is known, then 



f (x(t)� u(t)� t) � f (x(t)� u(t)) (7.5) 

g (x(t)� u(t)� t) � g (x(t)� u(t)) (7.6) 

then the model is time-invariant (in the sense de�ned earlier, for behavioral models). This 

corresponds to requiring time-invariance of the functions that specify how the state variables 

and inputs are combined to determine the state evolution and outputs. The results of exper-
iments on a time-invariant system depend only on the inputs and initial state, not on when 

the experiments are performed. 

If, on the other hand, the functions f( : ) and g( : ) in the state-space description are 

linear functions of the state variables and inputs, i.e. if 

f (x(t)� u(t)� t) � A(t)x(t) + B(t)u(t) (7.7) 

g (x(t)� u(t)� t) � C(t)x(t) + D(t)u(t) (7.8) 

then the model is linear, again in the behavioral sense. The case of a linear and periodically 

varying (LPV) model is often of interest� when A(t) � A(t + T ), B(t) � B(t + T ), C(t) � 

C(t + T ), and D(t) � D(t + T ) for all t, the model is LPV with period T . 

Of even more importance to us is the case of a model that is linear and time-invariant 

(LTI). For an LTI model, the state-space description simpli�es to 

f (x(t)� u(t)� t) � Ax(t) + Bu(t) (7.9) 

g (x(t)� u(t)� t) � Cx(t) + Du(t) : (7.10) 

We will primarily study LTI models in this course. Note that LTI state-space models are 

sometimes designated as (A� B� C� D) or "  

A B 

#
�
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as these four matrices completely specify the state-space model. 

one can compute vC 

(t0) and using the state property vC 

(tf 

) can be computed 

from which vR(tf 

) can be computed. This says that vR(t) de�nes a state which 

contradicts our intuition since it is not an energy storage component. 

There is an easy �x of this problem if we assume that all inputs are piece-wise 

continuous functions. In that case we de�ne the state property as the ability 

to compute future values of the state from the initial value x(t0) and the input 

u(t)� t0 

� t � tf 

. Notice the strict inequality. We leave it to you to verify that 

this de�nition rules out vR 

as a state variable. 

Linearity and Time-Invariance 

If in the state-space description (7.1), (7.2), we have 



System Type 

x_ (t) � tx2(t) NLTV 

x_ (t) � x2(t) NLTI 

x_ (t) � tx(t) LTV 

x_ (t) � (cos t)x(t) LPV 

x_ (t) � x(t) LTI 

Table 7.1: Some examples of linear, nonlinear, time-varying, periodically-varying, and time-
invariant state-space descriptions. 

Some examples of the various classes of systems listed above are given in Table 7.1. More 

elaborate examples follow. 

One might think that the state-space formulation is restrictive since it only involves 

�rst-order derivatives. However, by appropriately choosing the state variables, higher-order 

dynamics can be described. The examples in this section and on homework will make this 

clear. 

Example 7.2 (Mass-Spring System) 

For the mass-spring system in Example 6.2, we derived the following system rep-
resentation: 

Mz� � ;kz + u: 

To put this in state space form, choose position and velocity as state variables: 

x1 

� z 

x2 

� z_: (7.11) 

Therefore, 

x_ 1 

� z_ � x2 

k 1 k 1 

x_ 2 

� ; z + u � ; x1 

+ u : 

M M M M 

The input is the force u and let the output be the position of the mass. The 

resulting state space description of this system is " # " # 

x_ 1 

x2� k
M 

1x ;
 x1 

+ M u2_ 

y � x1 

: 



The above example suggests something that is true in general for mechanical systems: the 

natural state variables are the position and velocity variables (associated with potential energy 

and kinetic energy respectively). 

Example 7.3 (Nonlinear Circuit) 
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Figure 7.1: Nonlinear circuit. 

We wish to put the relationships describing the above circuit's behavior in state-
space form, taking the voltage v as an input, and choosing as output variables 

the voltage across the nonlinear element and the current through the inductor. 

The constituent relationship for the nonlinear admittance in the circuit diagram 

is inonlin 

� N (vnonlin), where N ( : ) denotes some nonlinear function. 

Let us try taking as our state variables the capacitor voltages and inductor cur-
rent, because these variables represent the energy storage mechanisms in the cir-
cuit. The corresponding state-space description will express the rates of change 

of these variables in terms of the instantaneous values of these variables and the 

instantaneous value of the input voltage v. It is natural, therefore, to look for 

expressions for C1x_ 1 

(the current through C1), for C2x_ 2 

(the current through C2), 

and for Lx_ 3 

(the voltage across L). 

Applying KCL to the node where R, C1, and the nonlinear device meet, we get 

C1x_ 1 

�
(x2 

; x1) ;N (x1)
R 

Applying KCL to the node where R, C2 

and L meet, we �nd 

C2x_ 2 

� x3 

; 

(x2 

; x1) 

R 

Finally, KVL applied to a loop containing L yields 

Lx_ 3 

� v ; x2 

Now we can combine these three equations to obtain a state-space description of 

this system: 2
 3
 2
 � 3
 3
2
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y � 

x1 : (7.13)
x3 

Observe that the output variables are described by an instantaneous output equa-
tion of the form (7.2). This state-space description is time-invariant but nonlinear. 

This makes sense, because the circuit does contain a nonlinear element! 

Example 7.4 (Discretization) 

Assume we have a continuous-time system described in state-space form by 

dx(t) 

� Ax(t) + Bu(t)� 

dt 

y(t) � Cx(t) + Du(t): 

Let us now sample this system with a period of T , and approximate the derivative 

as a forward di�erence: 

1 

(x ((k + 1)T ) ; x (kT ))  �  Ax (kT ) + Bu (kT ) � k 2 Z: (7.14)
T 

It is convenient to change our notation, writing x[k] � x(kT ), and similarly for u 

and y. Our sampled equation can thereby be rewritten as 

x[k + 1] � (I + TA) x[k] + T Bu[k] 

^ ^� Ax[k] + Bu[k] � 

y[k] � Cx[k] + Du[k] : (7.15) 

which is in standard state-space form. 

In many modern applications, control systems are implemented digitally. For that purpose, 

the control engineer must be able to analyze both discrete-time as well as continuous-time 

systems. In this example a crude sampling method was used to obtain a discrete-time model 

from a continuous-time one. We will discuss more re�ned discretization methods later on in 

this book. 

It is also important to point out that there are physical phenomena that directly require or 

suggest discrete-time models� not all discrete-time models that one encounters in applications 

are discretizations of continuous-time ones. 

7.3 Linearization 

Much of our attention in this course will be focused on linear models. Linear models frequently 

arise as descriptions of small perturbations away from a nominal solution of the system. 

Consider, for example, the continuous-time (CT) state-space model 

x_ (t) � f(x(t)� u(t)� t)
 

y(t) � g(x(t)� u(t)� t) (7.16)
 



where x(t) is the n-dimensional state-vector at time t, u(t) is the m-dimensional vector of 

inputs, and y(t) is the p-dimensional vector of outputs. Suppose xo(t), uo(t) and yo(t) con-
stitute a nominal solution of the system, i.e. a collection of CT signals that jointly satisfy 

the equations in (7.16). Now let the control and initial condition be perturbed from their 

nominal values to u(t) � uo(t)+ �u(t) and x(0) � xo(0) + �x(0) respectively, and let the state 

trajectory accordingly be perturbed to x(t) � xo(t) + �x(t). Substituting these new values 

into (7.16) and performing a (multivariable) Taylor series expansion to �rst-order terms, we 

�nd � � � � 

@f @f 

�x_(t) � �x(t) + �u(t)
@x @u �
 �
 

o �
 �
 

o 

@g @g 

�y(t) � �x(t) + �u(t) (7.17)
@x o 

@u o 

where the n�n matrix [@f�@x]o 

denotes the Jacobian of f(:� :� :) with respect to x, i.e. a matrix 

whose ij-th entry is the partial derivative of the ith component of f(:� :� :) with respect to the 

jth component of x, and where the other Jacobian matrices in (7.17) are similarly de�ned. 

The subscript o 

indicates that the Jacobians are evaluated along the nominal trajectory, i.e. 

at x(t) � xo(t) and u(t) � uo(t). The linearized model (7.17) is evidently linear, of the form 

_�x(t) � A(t) �x(t) + B(t) �u(t)
 

�y(t) � C(t) �x(t) + D(t) �u(t): (7.18)
 

When the original nonlinear model is time-invariant, the linearized model will also be time-
invariant if the nominal solution is constant (i.e. if the nominal solution corresponds to 

a constant equilibrium)� however, the linearized model may be time varying if the nominal 

solution is time varying (even if the original nonlinear model is time-invariant), and will be 

periodic | i.e., have periodically varying coe�cients | if the nominal solution is periodic (as 

happens when the nominal solution corresponds to operation in some cyclic or periodic steady 

state). 

The same development can be carried out for discrete-time (DT) systems, but we focus 

in this lecture on the CT case. 

Example 7.5 (Linearizing a Nonlinear Circuit Model) 

Consider linearizing the state-space model we obtained for the nonlinear circuit in 

Example 7.3. We ended up there with a nonlinear model of the form 2
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x3 
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x2 

;x1 5
 

+ 4
 

0 5
 

: (7.19)C2 

R 

1 1 x_ ; v3 L 

x2 L 

For the linearization, all that happens is each xj 

is replaced by �xj , and N (x1) is 

replaced by [dN (x1)�dx1]o 

�x1, resulting in a linear state-space model of the form 

�x_ (t) � A �x(t) + B �v(t) (7.20) 
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Example 7.6 (Linearizing the Inverted Pendulum) 

Recall from Example 6.3 the equations that describe the dynamics of the inverted 

pendulum. Those equations are nonlinear due to the presence of the terms sin(�), 

cos(�), and (�)2 . We can linearize these equations around � � 0 and � � 0, by 

_assuming that �(t) and �(t) remain small. Recall that for small �


1


sin(�) � � ; �3 

6 

cos(�) � 1 ; 

1 

�2� 

2 

and using the linear parts of these relations the linearized system of equations 

takes the form �
 �
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the following state-space model can be easily obtained: 0
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Exercises 

Exercise 7.1 Consider the nonlinear di�erence equation 

y(k + n) � F [y(k + n ; 1)� : : : � y(k)� u(k + n ; 1)� : : : � u(k)� k] 

where n is a �xed integer, and k is the time index. 

(a) Find a state-space representation of order 2n ; 1 for this di�erence equation. 

(b)	 Find an nth-order state-space representation in LTI case (what is the form of F in this case�), 

using z-transforms for guidance (natural state variables are the coe�cients of the initial-condition 

terms in the z-transformed version of the di�erence equation | try a third-order di�erence 

equation | remind of forward shift theorem from z-transforms). This part will guide the solution 

of (c). 

(c)	 Find an nth-order state-space representation for the nonlinear system in (a) for the case where 

F [ : ] has the special form 

nX 

F [ : ] � fi[y(k + n ; i)� u(k + n ; i)] 

i�1 

(Hint: Note that the di�erence equation in part (b) has this form� use your de�nition of state 

variables in (b) to guide your choice here.) 

Exercise 7.2 Consider a causal continuous-time system with input-output representation y(t) � 

h � u(t), where � denotes convolution and h(t) is the impulse response of the system: 

h(t) � 2e;t ; ce;2t for t � 0 

Here c denotes a constant. 

(a)	 Suppose c � 2. Use only the input-output representation of the system to show that the variables 

x1(t) � y(t) and x2(t) � y_(t) qualify as state variables of the system at time t. 

(b)	 Compute the transfer function of the system, and use it to describe what may be special about 

the case c � 2. 

Exercise 7.3 The input u(t) and output y(t) of a system are related by the equation 

dy(t)	 du(t)
+ a0(t)y(t) � b0(t)u(t) + b1(t)

dt	 dt 

Find a linear, time varying state-space representation of this system. 



Exercise 7.4 Given the periodically varying system x(k + 1) � A(k)x(k) + B(k)u(k) of period N , 

with A(k + N) � A(k) and B(k + N) � B(k), de�ne the sampled state z[k] and the associated extended 

input vector v[k] by 0
 1
CCA


u(kN) 

u(kN + 1) 

.



 . 

BB@


z[k] � x(kN) � v[k] � 


 

.


u(kN + N ; 1)


Now show that z[k + 1] � Fz[k] + Gv[k] for constant matrices F and G (i.e. matrices independent of 

k) by determining F and G explicitly. 

Exercise 7.5 Let the state space representations of two given systems be 

xi(k + 1) � Aixi(k) + Biui(k) � yi(k) � Cixi(k) � i � 1� 2 

Determine a state-space representation in the form 

x(k + 1) � Ax(k) + Bu(k) 

y(k) � Cx(k) 

for the new system obtained when systems 1 and 2 are interconnected (a) in series, (b) in parallel, and 

in a feedback loop. Assume the size of the inputs and outputs of the two systems are consistent for 

each of the above con�guration to make sense. 

Exercise 7.6 Consider a pendulum comprising a mass m at the end of a light but rigid rod of length 

r. The angle of the pendulum from its equilibrium position is denoted by �. Suppose a torque u(t) 

can be applied about the axis of support of the pendulum (e.g. suppose the pendulum is attached to 

the axis of an electric motor, with the current through the motor being converted to torque). A simple 

model for this system takes the form 

mr 

2��(t) + f�_(t) + mgr sin �(t) � u(t) 

where the term f�_ represents a frictional torque, with f being a positive coe�cient, and g is the 

acceleration due to gravity. 

(a) Find a state-space representation for this model. Is your state-space model linear� time invariant� 

(b)	 What nominal input uo(t) corresponds to the nominal motion �o(t) � �t for all t, where � is 

some �xed constant� 

(c)	 Linearize your state-space model in (a) around the nominal solution in (b). Is the resulting model 

linear� Is it time invariant or periodically varying� 



Exercise 7.7 Consider the horizontal motion of a particle of unit mass sliding under the in�uence 

of gravity on a frictionless wire. It can be shown that, if the wire is bent so that its height h is given 

by h(x) � V�(x), then a state-space model for the motion is given by 

x_ � z 

d 

z_ � ; V�(x)� 

dx 

Suppose V�(x) � x4 ; �x2 . 

(a) Verify that the above model has (z� x) � (0� 0) as equilibrium point for any � in the interval � 

r � 

� ;1 � � � 1, and it also has (z� x) � 0� � as equilibrium points when � is in the interval 

2
 

0 � � � 1.
 

(b) Derive the linearized system at each of these equilibrium points. 
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