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Chapter 5 

Matrix Perturbations
 

5.1 Introduction 

The following question arises frequently in matrix theory: What is the smallest possible per-
turbation of a matrix that causes it to lose rank� We discuss two cases next, with perturbations 

measured in the 2-norm, and then discuss the measurement of perturbations in the Frobenius 

norm. This provides us with a new formulation to the least squares estimation problem in 

which uncertainty is present in the matrix A as well as the vector y. This is known as total 

least squares. 

5.2 Additive Perturbation 

Theorem 5.1 Suppose A 2 C 

m�n has full column rank (� n). Then 

min fk 	�k j A + � has rank � ng � �n(A) : (5.1)	 2 

�2C 

m�n 

Proof:	 Suppose A + � has rank � n.	 6 xk2 

� 1 and Then there exists x � 0 such that k

(A + �) x � 0 : 

Since �x � ;Ax, 

k�xk2	 

� kAxk2 

� �n(A) : (5.2) 

From the properties of induced norms (see Section 3.1), we also know that 

k�k kxk � k�xk2 2 2: 



Using Equation (24.3) and the fact that kxk2 

� 1, we arrive at the following: 

k�k2	

� k�xk2 

� �n(A) (5.3) 

To complete the proof, we must show that the lower bound from Equation (5.3) can be 

achieved. Thus, we must construct a � so that A + � has rank � n and k�k2 

� �n(A)� such 

a � will be a minimizing solution. For this, choose 

� � ;�nunv 

0 

n 

where un, vn 

are the left and right singular vectors associated with the smallest singular value 

�n 

of A. Notice that k�k2 

� �n(A). This choice yields 

(A + �) vn	 

� �nun 

; �nunvn
� vn 

� �nun 

; �nun 

� 0 : 

That is, A + � has rank � n. This completes the proof. 

5.3	 Multiplicative Perturbation 

Theorem 5.2 (Small Gain) Given A 2 C 

m�n , 

1 

min fk�k2 

j I ; A� is singular g � :	 (5.4) 

�2C 

n�m �1(A) 

Proof: Suppose I ; A� is singular. Then there exists x 6� 0 such that 

(I ; A�) x � 0 

so 

kA�xk2 

� kxk2 

: (5.5) 

From the properties of induced norms (see Lecture 4 notes), 

kA�xk2 

� kAk2k�xk2 

� �1(A)k�xk2 

: 

Upon substituting the result in Equation (5.5) for kA�xk2, we �nd 

kxk2 

� �1(A)k�xk2 

: 



Dividing through by �1(A)kxk2 

yields 

k�xk2 

1 � � kxk2 

�1(A) 

which implies 

1 k�k2 

� : (5.6)
�1(A) 

To conclude the proof, we must show that this lower bound can be achieved. Thus, we 

construct a � which satis�es Equation (5.6) with equality and also causes (I ; A�) to be 

singular. For this, choose 

� � 

1 

v1u1 

0 :
 

�1(A) 

Notice that the lower bound (Equation (5.6)) is satis�ed with equality, i.e., k�k2 

� 1��1(A). 

Now choose x � u1. Then: 

(I ; A�) x � (I ; A�) u1 � � 

Av1u
0 

1� I ; u1
�1 

Av1
� u1 

; 

�1| {z }
u1 

� u1 

; u1 

(since Av1 

� �1u1) 

� 0 : 

This completes the proof. 

The theorem just proved is called the small gain theorem. The reason for this is that 

it guarantees (I ; A�) is nonsingular provided 

1 k�k2 

� : kAk2 

This condition is most often written as 

k�k2kAk2 

� 1 � (5.7) 

i.e., the product of the gains is less than one. 

Remark: We can actually obtain the additive perturbation result from multiplicative per-
turbation methods. Assume A is invertible, and � is a matrix which makes its sum with A 

singular. Since � � 

A +� � A I + A;1� � 



and A is nonsingular, then 

;
I + A;1� 

� 

must be singular. By our work with multiplicative 

perturbations, we know that the � associated with the smallest k�k2 

that makes this quantity 

singular satis�es 

1 k�k2 

� � �n(A) : 

�1(A;1) 

5.4 Perturbations Measured in the Frobenius Norm 

We will now demonstrate that, for the multiplicative and additive perturbation cases where 

we minimized the induced 2-norm, we also minimized the Frobenius norm. 

Let A 2 C 

m�n, and let rank(A) � r. 

0 1 1 

n m 2XX 4 kAkF 

� 

@ jaij j2A (5.8) 

j�1 i�1 

2� 

;
trace(A0A) 

� 1 

(5.9) � ! 1 

2rX 

� �i 

2 (the trace of a matrix is the sum of its eigenvalues) (5.10) 

i�1 

� �1(A) : (5.11) 

Therefore, 

kAkF 

� kAk2 

� (5.12) 

which is a useful inequality. 

In both the perturbation problems that we considered earlier, we found a rank-one solu-
tion, or dyad, for �: 

� � �uv0 � (5.13) 

where � 2 C , u 2 C 

m , v 2 C 

n such that kuk2 

� kvk2 

� 1. It is easy to show that the Frobenius 

norm and induced 2-norm are equal for rank one matrices of the form in Equation (5.13). It 

follows from this that the � which minimizes the induced 2-norm also minimizes the Frobenius 

norm, for the additive and multiplicative perturbation cases we have examined. In general, 

however, minimizing the induced 2-norm of a matrix does not imply the Frobenius norm is 

minimized (or vice versa.) 

Example 5.1 This example is intended to illustrate the use of the singular value 

decomposition and Frobenius norms in the solution of a minimum distance prob-
lem. Suppose we have a matrix A 2 C 

n�n, and we are interested in �nding the 

closest matrix to A of the form cW where c is a complex number and W is a 



unitary matrix. The distance is to be measured by the Frobenius norm. This 

problem can be formulated as 

min kA ; cW kF 

c2C �W 2C 

n�n 

where W 

0W � I. We can write 

kA ; cW k2 � Tr 

;	 

(A ; cW )0(A ; cW ) 

� 

F 

� Tr(A0A) ; c 

0Tr(W 

0A) ; cTr(A0W ) + jcj2Tr(W 

0W ): 

Note that Tr(W 

0W ) � Tr(I) � n. Therefore, we have 

kA ; cW k2 � kAk2 

F 

; 2Re  

;
c 

0Tr(W 

0A) 

� 

+ njcj2� (5.14)F 

and by taking 

1 

c � Tr(W 

0A) 

n 

the right hand side of Equation (5.14) will be minimized. Therefore we have that 

kA ; cW k2 � kAk2 

F 

; 

1 jTr(W 

0A)j2:F n 

Now we must minimize the right hand side with respect to W , which is equivalent 

to maximizing jTr(W 

0A)j. In order to achieve this we employ the singular value 

decomposition of A as U�V 

0, which gives 

jTr(W 

0A)j2	 � jTr(W 

0U�V 

0)j2 

� jTr(V 

0W 

0U�)j2: 

The matrix Z � V 

0W 

0U satis�es 

0ZZ 0	 � V 

0W 

0UU WV 

� I: 

Therefore, � !2n nX X 

jTr(Z�)j2 � j �iziij2 � �i 

� 

i�1 i�1 

implies that � !2 

1 

nX 

min kA ; cW k2 

F 

� kAk2 

F 

; �i 

: (5.15)
c�W	 n 

i�1 

In order to complete this example we show that the lower bound in Equation (5.15) 

can actually be achieved with a speci�c choice of W . Observe that 

Tr(W 

0U�V 

0) � Tr(W 

0UV 

0�)� 



and by letting W 

0 � V U 0 we obtain 

nX 

Tr(W 

0A) � Tr(�) � �i 

i�1 

and 

n1 

X 

c � �i: 

n 

i�1 

Putting all the pieces together, we get that �	 !2n nX 1 

X 

min kA ; cW k2 � �2 ; �2	 �F i i
c�W	 n 

i�1 i�1 

and the minimizing unitary matrix is given by � ! 

n1 

X 

cW � �i 

U	 V 

0: 

n 

i�1 

It is clear also that, in order for a matrix to be exactly represented as a complex 

multiple of a unitary matrix, all of its singular values must be equal. 

5.5	 Total Least Squares 

We have previously examined solving least squares problems of the form y � Ax + e. An 

interpretation of the problem we solved there is that we perturbed y as little as possible | 

in the least squares sense | to make the resulting equation y ; e � Ax consistent. It is 

natural to ask what happens if we allow A to be perturbed as well, in addition to perturbing 

y. This makes sense in situations where the uncertainty in our model and the noise in our 

measurements cannot or should not be attributed entirely to y, but also to A. The simplest 

least squares problem of this type is one that allows a perturbed model of the form 

y �	 (A + �) x + e : (5.16) 

The so-called total least squares estimation problem can now be stated as 0	 11 X X 

2 

. .min 

@ j�ijj2 + jeij2A � min k� . ekF	 

(5.17)
��e	 ��e 

i�j i 

� min k�̂ kF 

�	 (5.18)
��e 

where � � 

^ . 

� �	 � . 

. e : (5.19) 



Weighted versions of this problem can also be posed, but we omit these generalizations. 

Note that no constraints have been imposed on � in the above problem statement, and 

this can often limit the direct usefulness of the total least squares formulation in practical 

problems. In practice, the expected or allowed perturbations of A are often quite structured� 

however, the solution of the total least squares problem under such structural constraints is 

much harder than that of the unconstrained problem that we present the solution of next. 

Nevertheless, the total least squares formulation can provide a useful benchmark. (The same 

sorts of comments can of course be made about the conventional least squares formulation: 

it is often not the criterion that we would want to use, but its tractability compared to other 

criteria makes it a useful point of departure.) 

If we make the de�nitions 

Â � 

h 

A 

. . . ;y 

i 

� x̂ � 

" 

x 

1 

# 

(5.20) 

then the perturbed model in Equation (5.16) can be rewritten as � � 

^ ^A +� x̂ � 0 : (5.21) 

^This equation makes evident that what we seek is the � with minimal Frobenius norm that 

^ ^ ^satis�es Equation (5.21)|the smallest � that makes A + � singular. 

Let us suppose that A has full column rank (n), and that it has more rows than columns 

(which is normally the case, since in least squares estimation we typically have many more 

^measurements than parameters to estimate). In addition, let us assume that A has rank 

(n + 1), which is also generally true. From what we've learned about additive perturbations, 

^we now see that a minimal (in a Frobenius sense) � that satis�es Equation (5.21) is 

^ 

0� � ;�n+1un+1vn+1 

� (5.22) 

^where the �n+1, un+1 

and vn+1 

are derived from the SVD of A (i.e. �n+1 

is the smallest 

^ ^ ^singular value of A, etc.). Given that we now know A and �, choosing x̂ � vn+1, and 

rescaling x̂, we have " # � � 

^ ^ 

x 

A +� � 0 � 

1 

which gives us x, the total least squares solution. This solution is due to Golub and Van Loan 

(see their classic text on Matrix Computations, Second Edition, Johns Hopkins University 

Press, 1989). 

5.6 Conditioning of Matrix Inversion 

We are now in a position to address some of the issues that came up in Example 1 of Lecture 

4, regarding the sensitivity of the inverse A;1 and of the solution x � A;1b to perturbations 



in A (and/or b, for that matter). We �rst consider the case where A is invertible, and examine 

the sensitivity of A;1 . Taking di�erentials in the de�ning equation A;1A � I, we �nd 

d(A;1) A + A;1 dA � 0 � (5.23) 

where the order of the terms in each half of the sum is important, of course. (Rather than 

working with di�erentials, we could equivalently work with perturbations of the form A + �P , 

etc., where � is vanishingly small, but this really amounts to the same thing.) Rearranging 

the preceding expression, we �nd 

d(A;1) � ;A;1 dA A;1 (5.24) 

Taking norms, the result is 

kd(A;1)k � kA;1k2kdAk (5.25) 

or equivalently 

kd(A;1)k � kAkkA;1kkdAk 

(5.26)kA;1k kAk 

This derivation holds for any submultiplicative norm. The product kAkkA;1k is termed the 

condition number of A with respect to inversion (or simply the condition number of A) and 

denoted by K(A): 

K(A) � kAkkA;1k (5.27) 

When we wish to specify which norm is being used, a subscript is attached to K(A). Our 

earlier results on the SVD show, for example, that 

K2(A) � �max��min 

(5.28) 

The condition number in this 2-norm tells us how slender the ellipsoid Ax for kxk2 

� 1 is | 

see Figure 5.1. In what follows, we shall focus on the 2-norm condition number (but will omit 

the subscript unless essential). 

Some properties of the 2-norm condition number (all of which are easy to show, and 

some of which extend to the condition number in other norms) are 

� K(A) � 1� 

� K(A) � K(A;1)� 

� K(AB) � K(A)K(B)� 

� Given U 0U � I, K(UA) � K(A). 

The importance of (5.26) is that the bound can actually be attained for some choice of the 

perturbation dA and of the matrix norm, so the situation can get as bad as the bound allows: 

the fractional change in the inverse can be K(A) times as large as the fractional change 

in the original. In the case of 2-norms, a particular perturbation that attains the bound 



σ σ 
2 1(A) (A) 

Figure 5.1: Depiction of how A (a real 2 � 2 matrix) maps the unit circle. The major axis of 

the ellipse corresponds to the largest singular value, the minor axis to the smallest. 

can be derived from the � of Theorem 5.1, by simply replacing ;�n 

in � by a di�erential 

perturbation: 

dA � ;d� unv 

0 (5.29)n 

We have established that a large condition number corresponds to a matrix whose inverse 

is very sensitive to relatively small perturbations in the matrix. Such a matrix is termed ill 

conditioned or poorly conditioned with respect to inversion. A perfectly conditioned matrix 

is one whose condition number takes the minimum possible value, namely 1. 

A high condition number also indicates that a matrix is close to losing rank, in the 

following sense: There is a perturbation � of small norm (� �min) relative to kAk (� �max) 

such that A + � has lower rank than A. This follows from our additive perturbation result 

in Theorem 5.1. This interpretation extends to non-square matrices as well. We shall term 

the ratio in (5.28) the condition number of A even when A is non-square, and think of it as 

a measure of nearness to a rank loss. 

Turning now to the sensitivity of the solution x � A;1b of a linear system of equations 

in the form Ax � b, we can proceed similarly. Taking di�erentials, we �nd that 

dx � ;A;1 dA A;1b + A;1 db � ;A;1 dA x + A;1b (5.30) 

Taking norms then yields 

kdxk � kA;1kkdAkkxk + kA;1kkdbk (5.31) 

Dividing both sides of this by kxk, and using the fact that kxk � (kbk�kAk), we get 

kdxk 

�kdAk kdbk� 

� K(A) + (5.32)kxk kAk kbk 

We can come close to attaining this bound if, for example, b happens to be nearly collinear 

with the column of U in the SVD of A that is associated with �min, and if appropriate 

perturbations occur. Once again, therefore, the fractional change in the answer can be close 

to K(A) times as large as the fractional changes in the given matrices. 



Example 5.2 For the matrix A given in Example 1 of Lecture 4, the SVD is � � � �� �� � 

100 100 :7068 :7075 200:1 0 :7075 :7068 

A � � 

100:2 100 :7075 : ; 7068 0 0:1 ;:7068 :7075 

(5.33) 

The condition number of A is seen to be 2001, which accounts for the 1000-fold 

magni�cation of error in the inverse for the perturbation we used in that example. 

The perturbation � of smallest 2-norm that causes A + � to become singular is � �� �� � 

:7068 :7075 0 0 :7075 :7068 

� � 

:7075 : ; 7068 0 ;0:1 ;:7068 :7075 

whose norm is 0.1. Carrying out the multiplication gives � � 

:05 ;:05 

� � ;:05 :05 

With b � [1 ;1]T , we saw large sensitivity of the solution x to perturbations in A. 

Note that this b is indeed nearly collinear with the second column of U . If, on the 

other hand, we had b � [1 1], which is more closely aligned with the �rst column 

of U , then the solution would have been hardly a�ected by the perturbation in A 

| a claim that we leave you to verify. 

Thus K(A) serves as a bound on the magni�cation factor that relates fractional changes 

in A or b to fractional changes in our solution x. 

Conditioning of Least Squares Estimation 

Our objective in the least-square-error estimation problem was to �nd the value xb of x that 

minimizes ky ; Axk22, under the assumption that A has full column rank. A detailed analysis 

of the conditioning of this case is beyond our scope (see Matrix Computations by Golub and 

Van Loan, cited above, for a detailed treatment). We shall make do here with a statement of 

the main result in the case that the fractional residual is much less than 1, i.e. 

ky ; Axbk2 � 1 (5.34)kyk2 

This low-residual case is certainly of interest in practice, assuming that one is �tting a rea-
sonably good model to the data. In this case, it can be shown that the fractional change 

kdxbk2�kxbk2 

in the solution xb can approach K(A) times the sum of the fractional changes in 

A and y, where K(A) � �max(A)��min(A). In the light of our earlier results for the case of 

invertible A, this result is perhaps not surprising. 

Given this result, it is easy to explain why solving the normal equations 

(A0A)xb � A0 y 



to determine xb is numerically unattractive (in the low-residual case). The numerical inversion 

of A0A is governed by the condition number of A0A, and this is the square of the condition 

number of A: 

K(A0A) � K2(A) 

You should con�rm this using the SVD of A. The process of directly solving the normal 

equations will thus introduce errors that are not intrinsic to the least-square-error problem, 

because this problem is governed by the condition number K(A), according to the result 

quoted above. Fortunately, there are other algorithms for computing xb that are governed 

by the condition number K(A) rather than the square of this (and Matlab uses one such 

algorithm to compute xb when you invoke its least squares solution command). 



Exercises 

Exercise 5.1 Suppose the complex m � n matrix A is perturbed to the matrix A + E. 

(a)	 Show that 

j �max(A + E) ; �max(A) j � �max(E) 

Also �nd an E that results in the inequality being achieved with equality.
 

(Hint: To show the inequality, write (A + E) � A + E and A � (A + E) ; E, take the 2-norm
 

on both sides of each equation, and use the triangle inequality.)
 

It turns out that the result in (a) actually applies to all the singular values of A and A + E, not 

just the largest one. Part (b) below is one version of the result for the smallest singular value. 

(b)	 Suppose A has less than full column rank, i.e. has rank� n, but A + E has full column rank. 

Show (following a procedure similar to part (a) | but looking at min k(A + E)xk2 

rather than 

the norm of A + E, etc.) that 

�min(A + E) � �max(E) 

Again �nd an E that results in the inequality being achieved with equality. 

[The result in (b), and some extensions of it, give rise to the following sound (and widely used) 

procedure for estimating the rank of some underlying matrix A, given only the matrix A + E 

and knowledge of kEk2: Compute the SVD of A + E, then declare the \numerical rank" of A to 

be the number of singular values of A + E that are larger than the threshold kEk2. The given 

information is consistent with having an A of this rank.] 

(c)	 Verify the above results using your own examples in MATLAB. You might also �nd it interesting 

to verify numerically that for large m, n, the norm of the matrix E � s � randn(m� n) | which 

is a matrix whose entries are independent, zero-mean, Gaussian, with standard deviation s | 

is close to s � (
p
m + 

p
n). So if A is perturbed by such a matrix, then a reasonable value to use 

as a threshold when determining the numerical rank of A is this number. 

Exercise 5.2 Let A and E be m � n matrices. Show that 

min kA ; Ek2 

� �r+1(A): 

rank E�r 

To prove this, notice that the rank constraint on E can be interpreted as follows: If v1� : : : � vr+1 

are 

linearly independent vectors, then there exists a nonzero vector z, expressed as a linear combination 

of such vectors, that belongs to the nullspace of E. Proceed as follows: 

1. Select the vi's from the SVD of A. 

2. Select a candidate element z with kzk2 

� 1. 

3. Show that k(A ; E)zk2 

� �r+1. This implies that kA ; Ek2 

� �r+1. 

4. Construct an E that achieves the above bound. 



Exercise 5.3 Consider the real, square system of equations Ax � (U�V 

T )x � y, where U and V 

are orthogonal matrices, with ���� 

1 0	 1 

� � � y � U 

0 10;6 10;6 

All norms in this problem are taken to be 2-norms. 

(a) What is the norm of the exact solution x � 

(b)	 Suppose y is perturbed to y + �y, and that correspondingly the solution changes from x in (a) to 

x + �x. Find a perturbation �y, with k�yk � 10;6, such that 

k�xk k�yk � �(A)kxk kyk
 

where �(A) is the condition number of A.
 

(c)	 Suppose instead of perturbing y we perturb A, changing it to A + �A, with the solution corre-
spondingly changing from x to x + �x (for some �x that is di�erent than in part (b) ). Find a 

perturbation �A, with k�Ak � 10;7, such that 

k�xk k�Ak � �(A)kxk kAk 

Exercise 5.4 Positive De�nite Matrices 

A matrix A is positive semi-de�nite if x0Ax � 0 for all x 6� 0. We say Y is the square root of a 

Hermitian positive semi-de�nite matrix if Y 

0Y � A. Show that Y always exists and can be constructed 

from the SVD of A. 

Exercise 5.5 Let A and B have compatible dimensions. Show that if 

kAxk2 

� kBxk2 

for all x� 

then there exists a matrix Y with kY k2 

� 1 such that 

A � Y B: 

Assume B has full rank to simplicity. 

Exercise 5.6 (a) Suppose ����


�
 

X 


 A 

���� 

� 

� �: 


 

Show that there exists a matrix Y with kY k2 

� 1 such that 

X � Y (�2I ; A0A) 

1 

2 



(b) Suppose 

k( X A )k � �: 

1 

Show that there exists a matrix Z with kZk � 1 such that X � (�2I ; AA�) 

2 Z. 

Exercise 5.7 Matrix Dilation 

The problems above can help us prove the following important result: 

�0 

:� min 

X 

����


����


�
 

� max k( C A )k � 

����


B
 

A
 

���� 

�
 �
 

:
 

�
�
 �
 

X B
 

C A
 


 
 
 

This is known as the matrix dilation theorem. Notice that the left hand side is always greater 

than or equal to the right hand side irrespective of the choice of X . Below, we outline the steps 

necessary to prove that this lower bound is tight. Matrix dilations play an important role in systems 

theory particularly in model reduction problems. 

1. Let �1 

be de�ned as ����


����


�
 �
 �
 �
 

B



 A
 

�1 

� max k( C A )k � :


Show that: 

�0 

� �1: 

2. Use the previous exercise to show that there exists two matrices Y and Z with norms less than 

or equal to one such that 

1 1 

B � Y (�1
2I ; A�A) 

2 � C � (�1
2I ; AA�) 

2 Z:  

~3. De�ne a candidate solution to be X � ;Y A�Z. Show by direct substitution that ����


���� 

�
 


 
 

����


����


�


� 

�


�Z Y (�1
2I ; A�A) 

1 

�1
2I ; AA�)�
 

�


X~ B


C A
 

;Y A 

2 

�
 1 

C � (


2 Z A
 

�


����


����


�
 �� �
 ;A� (�1
2I ; A�A) 

1 

C � (�1
2I ; AA�) 

Y 0


2 Z 0 

1

0 I
 0 I


2 A
 

4. Show that ����


�
 

X~ B 


 C A 

���� 

� 

� �1: 


 

This implies that �0 

� �1 

which proves the assertion. 

Exercise 5.8 Prove or disprove (through a counter example) the following singular values inequali-
ties. 

1. �min(A + B) � �min(A) + �min(B) for any A and B. 

2. �min(A + E) � �max(E) whenever A does not have column rank, and E is any matrix. 



3. If �max(A) � 1, then 

1 

�max(I ; A);1 � 

1 ; �max(A) 

4. �i(I + A) � �i(A) + 1. 
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