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Chapter 4 

Matrix Norms and Singular Value 

Decomposition 

4.1 Introduction 

In this lecture, we introduce the notion of a norm for matrices. The singular value decom-

position or SVD of a matrix is then presented. The SVD exposes the 2-norm of a matrix, 

but its value to us goes much further: it enables the solution of a class of matrix perturbation 

problems that form the basis for the stability robustness concepts introduced later� it solves 

the so-called total least squares problem, which is a generalization of the least squares estima-
tion problem considered earlier� and it allows us to clarify the notion of conditioning, in the 

context of matrix inversion. These applications of the SVD are presented at greater length in 

the next lecture. 

Example 4.1 To provide some immediate motivation for the study and applica-
tion of matrix norms, we begin with an example that clearly brings out the issue 

of matrix conditioning with respect to inversion. The question of interest is how 

sensitive the inverse of a matrix is to perturbations of the matrix. 

Consider inverting the matrix � � 

100 100 

A � (4.1)
100:2 100
 

A quick calculation shows that
 � � 

A;1 � 

;5 5 

(4.2)
5:01 ;5
 

Now suppose we invert the perturbed matrix
 � � 

100 100 

A +�A � (4.3)
100:1 100 



The result now is � � 

(A +�A);1 � A;1 + �(A;1) � 

;10 10 

(4.4)
10:01 ;10 

Here �A denotes the perturbation in A and �(A;1) denotes the resulting per-
turbation in A;1 . Evidently a 0.1% change in one entry of A has resulted in a 

100% change in the entries of A;1 . If we want to solve the problem Ax � b where 

b � [1 ; 1]T , then x � A;1b � [;10 10:01]T , while after perturbation of A we 

get x +�x � (A +�A);1b � [;20 20:01]T . Again, we see a 100% change in the 

entries of the solution with only a 0.1% change in the starting data. 

The situation seen in the above example is much worse than what can ever arise in the 

scalar case. If a is a scalar, then d(a;1)�(a;1) � ;da�a, so the fractional change in the 

inverse of a has the same maginitude as the fractional change in a itself. What is seen in the 

above example, therefore, is a purely matrix phenomenon. It would seem to be related to 

the fact that A is nearly singular | in the sense that its columns are nearly dependent, its 

determinant is much smaller than its largest element, and so on. In what follows (see next 

lecture), we shall develop a sound way to measure nearness to singularity, and show how this 

measure relates to sensitivity under inversion. 

Before understanding such sensitivity to perturbations in more detail, we need ways to 

measure the \magnitudes" of vectors and matrices. We have already introduced the notion 

of vector norms in Lecture 1, so we now turn to the de�nition of matrix norms. 

4.2 Matrix Norms 

An m � n complex matrix may be viewed as an operator on the (�nite dimensional) normed 

vector space C 

n: 

Am�n : ( C 

n� k � k2 

) ;! ( C 

m� k � k2 

)	 (4.5) 

where the norm here is taken to be the standard Euclidean norm. De�ne the induced 2-norm 

of A as follows: 

4 

kAxk2kAk2 

�	 sup (4.6) 

x6 kxk2�0 

� max kAxk2 

:	 (4.7) 

kxk �1
2 

The term \induced" refers to the fact that the de�nition of a norm for vectors such as Ax and 

x is what enables the above de�nition of a matrix norm. From this de�nition, it follows that 

the induced norm measures the amount of \ampli�cation" the matrix A provides to vectors 

on the unit sphere in C 

n, i.e. it measures the \gain" of the matrix. 

Rather than measuring the vectors x and Ax using the 2-norm, we could use any p-norm, 

the interesting cases being p � 1� 2� 1. Our notation for this is 

kAk p 

� max kAxk p 

:	 (4.8) 

kxk �1 p 



An important question to consider is whether or not the induced norm is actually a norm, 

in the sense de�ned for vectors in Lecture 1. Recall the three conditions that de�ne a norm: 

1. kxk � 0, and kxk � 0 () x � 0� 

2. k�xk � j�j kxk� 

3. kx + yk � kxk + kyk . 

Now let us verify that kAk p 

is a norm on C 

m�n | using the preceding de�nition: 

1. kAk � 0 since kAxk � 0 for any x. Futhermore, kAk � 0 () A � 0, since kAk is p p p p 

calculated from the maximum of kAxk p 

evaluated on the unit sphere. 

2. k�Akp 

� j�j kAkp 

follows from k�ykp 

� j�j kykp 

(for any y). 

3. The triangle inequality holds since:
 

kA + Bk p 

� max k(A + B)xk p
kxk �1 p � � 

� max kAxk + kBxk 

kxk �1 

p p 

p 

� kAk + kBk : p p 

Induced norms have two additional properties that are very important: 

1. kAxk � kAk kxk , which is a direct consequence of the de�nition of an induced norm� p p p

2. For Am�n , Bn�r , 

kABk � kAk kBk (4.9)p p p 

which is called the submultiplicative property. This also follows directly from the de�ni-
tion: 

kABxk � kAk kBxk p p p 

� kAk kBk kxk for any x: p p p 

Dividing by kxk p 

:
 

kABxk
 p � kAk kBk � kxk 

p p 

p 

from which the result follows. 

Before we turn to a more detailed study of ideas surrounding the induced 2-norm, which 

will be the focus of this lecture and the next, we make some remarks about the other induced 

norms of practical interest, namely the induced 1-norm and induced 1-norm. We shall also 



say something about an important matrix norm that is not an induced norm, namely the 

Frobenius norm. 

It is a fairly simple exercise to prove that 

mX 

kAk1 

� max jaij j (max of absolute column sums of A) � (4.10)
1�j�n 

i�1 

and 

nX 

kAk1 

� max jaijj (max of absolute row sums of A) : (4.11)
1�i�m 

j�1 

(Note that these de�nitions reduce to the familiar ones for the 1-norm and 1-norm of column 

vectors in the case n � 1.) 

The proof for the induced 1-norm involves two stages, namely: 

1. Prove that the quantity in Equation (4.11) provides an upper bound �: 

kAxk1 

� �kxk1 

8x � 

2. Show that this bound is achievable for some x � x̂: 

kAx̂k1 

� �kx̂k1 

for some x̂ : 

In order to show how these steps can be implemented, we give the details for the 1-norm 

case. Let x 2 C 

n and consider 

nX 

kAxk1 

� max j aijxjj
1�i�m 

j�1 

nX 

� max jaijjjxj j
1�i�m 

j�1 0 1 

nX 

� 

@ max jaij jA max jxjj
1�i�m 1�j�n 

j�1 0 1 

nX 

� 

@ max jaij jA kxk1 

1�i�m 

j�1 

The above inequalities show that an upper bound � is given by 

nX 

max kAxk1 

� � � max jaijj: 

kxk1�1 

1�i�m 

j�1 



Now in order to show that this upper bound is achieved by some vector x̂, let 

�i be an index P
n 

j�1 

ja�at which the expression of � achieves a maximum, that is � � ij  

j. De�ne the vector ^ x 

as 32 66664


sgn(a�i1) 

sgn(a�i2) 

. . . 

77775


x̂ � :



 

sgn(a�in) 

Clearly kx̂k1 

� 1 and 

n 

kAx̂k1 

� ja�ijj � �: 

X 

j�1 

The proof for the 1-norm proceeds in exactly the same way, and is left to the reader. 

There are matrix norms | i.e. functions that satisfy the three de�ning conditions stated 

earlier | that are not induced norms. The most important example of this for us is the 

Frobenius norm: 10 

n mX
 X
4 2kAkF 

� 

@
 jaijj 

A
 

j�1 i�1 

1 

2 

(4.12)


2� 

;
 

trace(A0A) 

� 1 

(verify)	 (4.13) 

In other words, the Frobenius norm is de�ned as the root sum of squares of the entries, i.e. 

the usual Euclidean 2-norm of the matrix when it is regarded simply as a vector in C 

mn . 

Although it can be shown that it is not an induced matrix norm, the Frobenius norm still has 

the submultiplicative property that was noted for induced norms. Yet other matrix norms 

may be de�ned (some of them without the submultiplicative property), but the ones above 

are the only ones of interest to us. 

4.3 Singular Value Decomposition 

Before we discuss the singular value decomposition of matrices, we begin with some matrix 

facts and de�nitions. 

Some Matrix Facts: 

�	 A matrix U 2 C 

n�n is unitary if U 0U � UU 0 � I. Here, as in Matlab, the superscript 

denotes the (entry-by-entry) complex conjugate of the transpose, which is also called 

the Hermitian transpose or conjugate transpose. 

�	 A matrix U 2 R
n�n is orthogonal if UT U � UUT � I, where the superscript 

T denotes 

the transpose. 

�	 Property: If U is unitary, then kUxk2 

� kxk2. 

0 



�	 If S � S0 (i.e. S equals its Hermitian transpose, in which case we say S is Hermitian), 

then there exists a unitary matrix such that U 0SU � [diagonal matrix].1 

�	 For any matrix A, both A0A and AA0 are Hermitian, and thus can always be diagonalized 

by unitary matrices. 

�	 For any matrix A, the eigenvalues of A0A and AA0 are always real and non-negative 

(proved easily by contradiction). 

Theorem 4.1 (Singular Value Decomposition, or SVD) Given any matrix A 2 C 

m�n , 

A can be written as 

m�m m�n n�n 

A � U � 

V 

0 �	 (4.14) 

where U 0U � I, V 

0V � I, 32 

�1 

. . . 0 

�r 

6666664


7777775


� �
 �	 (4.15) 


 

0 0


are arranged in order of descending magnitude, i.e.,
 

�1 

� �2 

� � � � � �r 

� 0 : 

p

Proof: We will prove this theorem for the case rank(A) � m� the general case involves very 

little more than what is required for this case. The matrix AA0 is Hermitian, and it can 

therefore be diagonalized by a unitary matrix U 2 C 

m�m, so that 

U�1U
0 � AA0: 

Note that �1 

� diag(�1� �2� : : : � �m) has real positive diagonal entries �i 

due to the fact that 

2 0 2 C 

m�nAA0 is positive de�nite. We can write �1 

� �2
1 

� diag(�1
2� �2

2� : : : � �m). De�ne V1 

by V1 

0 � �;1
 

1U 0A. V1 

0 has orthonormal rows as can be seen from the following calculation: 

;1
V1 

0V1 

� �1 

U 0AA0U�;1
1 � I. Choose the matrix V2 

0 in such a way that "
 #
 

V 

0 

V 

0 � 

1 

V 

0 

2 

is in C 

n�n and unitary. De�ne the m � n matrix � � [�1j0]. This implies that 

�V 

0 � �1V1 

0 � U 0A: 

In other words we have A � U�V 

0 . 

1 One cannot always diagonalize an arbitrary matrix|cf the Jordan form. 

ith nonzero eigenvalue of A0A.
and �i 

� The �i 

are termed the singular values of A, and 



Example 4.2 For the matrix A given at the beginning of this lecture, the SVD 

| computed easily in Matlab by writing [u� s� v] � svd(A) | is �
 �� �� 

:7068 :7075 200:1 0 :7075 :7068 

�


Observations: 

A � 

:7075 : ; 7068 0 0:1 ;:7068 :7075 

(4.16) 

i) 

AA0 � U�V 

0V �T U 0 

2 6666664 

U��T U 0�
 3


�1
2 

. . . 0 

7777775


U 0� U
 �2 

r 

� (4.17)



 


 

0 0 

which tells us U diagonalizes AA0� 

ii) 

A0A � V �T U 0U�V 

0 

2 6666664 

V �T �V 

0�
 3


�1
2 

. . . 0 

7777775


V 

0� V
 �2 

r 

� (4.18)
 

0 0 

which tells us V diagonalizes A0A� 

iii) If U and V are expressed in terms of their columns, i.e., ih
U � u1 

u2 

� � � um 

and ih
V � v1 

v2 

� � � vn 

� 

then Xr 

A � �iuivi 

0 � (4.19) 

i�1 



which is another way to write the SVD. The ui 

are termed the left singular vectors of 

A, and the vi 

are its right singular vectors. From this we see that we can alternately 

interpret Ax as 

r 

Ax � �i 

ui 

vi
0 x � (4.20) 

X ;| {z �} 


 

i�1 

projection

which is a weighted sum of the ui, where the weights are the products of the singular 

values and the projections of x onto the vi. P
 

Observation (iii) tells us that Ra(A) � span fu1� : : : urg (because Ax � i
r 

�1 

ciui 

| 

where the ci 

are scalar weights). Since the columns of U are independent, dim Ra(A) � r � rank (A),  

and fu1� : : : urg constitute a basis for the range space of A. The null space of A is given by 

spanfvr+1� : : : � vng. To see this: 

U�V 

0 x � 0 () �V 

0 x � 0 2
 3
 

�1v1
0 x 

() 46 


 

.

.. 57 


 

� 0 

x�rvr 

0 

() vi 

0 x � 0 � i � 1� : : : � r 

() x 2 spanfvr+1� : : : � vng: 

Example 4.3 One application of singular value decomposition is to the solution 

of a system of algebraic equations. Suppose A is an m � n complex matrix and b 

is a vector in C 

m . Assume that the rank of A is equal to k, with k � m. We are 

looking for a solution of the linear system Ax � b. By applying the singular value 

decomposition procedure to A, we get 

A �
 U�2V 

0 3
 

�1 

0 

� U
 

64
 

75
 

V 

0 

0 0 

where �1 

is a k � k non-singular diagonal matrix. We will express the unitary


matrices U and V columnwise as
 h i 

U � u1 

u2 

: : : um h i 

V � v1 

v2 

: : : vn 

: 

A necessary and su�cient condition for the solvability of this system of equations


is that ui 

0 b � 0 for all i satisfying k � i � m. Otherwise, the system of equations


is inconsistent. This condition means that the vector b must be orthogonal to the




last m ; k columns of U . Therefore the system of linear equations can be written 

as 2
 3
 

�1 

0 7564 
 

V 

0 x � U 0b

 

0 0 2
 3
 2
 3
 u0 

1b 

u0 

1
 

b 

�
 

6666666664


7777777775


.
. .
 

u0 bk 

0


.
. . 

V 

0 x �


66666664


77777775


2
 3
 

�1 

0 

u0 

2b 

.
 .
 .
 

. . 


 .
 

7564 
 

0 0


:



 


 

0 
 
 

bum 0


Using the above equation and the invertibility of �1, we can rewrite the system of 

equations as
 2
 0 

3
 2
 1 3


u0 

1bv1 �1
66664


77775


x � 

6664


0 7775


1 0 

2bv u2 �2 .
.
.


: : :
 


 


 
 

0 

1
 u0 bvk �k 

k

By using the fact that 2
 3
 0v1
 66664


h77775 

0v
2
. . . 

i


v1 

v2 

: : : vk 

� I� 


 
 

0vk
 

we obtain a solution of the form 

kX 

u 

�ii�1 

1
 0 

ib vi:x � 

From the observations that were made earlier, we know that the vectors vk+1� vk+2� : : : � vn 

span the kernel of A, and therefore a general solution of the system of linear equa-
tions is given by 

kX 

x � (u 

nX 

vi 

+ �ivi� 

1
 0 b)i�ii�1 i�k+1 

where the coe�cients �i, with i in the interval k+1 � i � n, are arbitrary complex 

numbers. 



4.4	 Relationship to Matrix Norms 

The singular value decomposition can be used to compute the induced 2-norm of a matrix A. 

Theorem 4.2 

4 

kAxk2kAk2 

�	 sup 

x 6 kxk2�0 

� �1 

(4.21) 

� �max(A) � 

which tells us that the maximum ampli�cation is given by the maximum singular value. 

Proof: 

kAxk2 

kU�V 

0xk2sup � sup 

x�06	 	 

kxk2 

x6�0	

kxk2 

k�V 

0xk2� sup 

x 6 kxk2�0 

k�yk2� sup 

y�0 

kV yk26 �P	

�1 

r 

2 

2 

i�1 

�i 

2jyij
� sup �P 

� 1 

y 6 r jyij2�0	 

2 

i�1 

� �1 

: 

For y � [1 0 � � � 0]T , k�yk2 

� �1, and the supremum is attained. (Notice that this correponds 

to x � v1. Hence, Av1 

� �1u1.) 

Another application of the singular value decomposition is in computing the minimal 

ampli�cation a full rank matrix exerts on elements with 2-norm equal to 1. 

Theorem 4.3 Given A 2 C 

m�n, suppose rank(A) � n. Then 

min kAxk2 

� �n(A) :	 (4.22) 

kxk �1
2 

Note that if rank(A) � n, then there is an x such that the minimum is zero (rewrite A in
 

terms of its SVD to see this).
 

Proof: For any kxk2 

� 1,
 

kAxk2	 

� kU�V 

0 xk2 

� k�V 

0 xk2 

(invariant under multiplication by unitary matrices) 

� k�yk2 



2x2 

v 

v 

A A v 
A v2 

1 

2 
1 

Figure 4.1: Graphical depiction of the mapping involving A2�2 . Note that Av1 

� �1u1 

and 

that Av2 

� �2u2. 

for y � V 

0x.	 Now 

� ! 1 

n 2X
k�yk2 

� j�iyij2 

i�1 

� �n 

: 

Note that the minimum is achieved for y � [0 0 � � � 0 1]T � thus the proof is complete. 

The Frobenius norm can also be expressed quite simply in terms of the singular values. 

We leave you to verify that 0 11 

n m 2XX 4 kAkF 

� 

@ jaij j2A 

j�1 i�1 

1 

2� 

;
trace(A0A) 

�	 

� ! 1 

rX 

� �i 

2	 (4.23) 

i�1 

Example 4.4 Matrix Inequality 

We say A � B, two square matrices, if 

0 x 

0Ax � x Bx 6for all x � 0:
 

It follows that for any matrix A, not necessarily square,
 

kAk2 

� � $ A0A � �2I:
 

2 



Exercises 

Exercise 4.1 Verify that for any A, an m � n matrix, the following holds: 

p 

1 kAk1 

� kAk2 

� pmkAk1: 

n 

Exercise 4.2 Suppose A0 � A. Find the exact relation between the eigenvalues and singular values 

of A. Does this hold if A is not conjugate symmetric� 

Exercise 4.3 Show that if rank(A) � 1, then, kAkF 

� kAk2. 

Exercise 4.4 This problem leads you through the argument for the existence of the SVD, using an 

iterative construction. Showing that A � U�V 

0, where U and V are unitary matrices is equivalent to 

showing that U 0AV � �. 

a) Argue from the de�nition of kAk2 

that there exist unit vectors (measured in the 2-norm) x 2 C 

n 

and y 2 C 

m such that Ax � �y, where � � kAk2. 

b) We can extend both x and y above to orthonormal bases, i.e. we can �nd unitary matrices 

V1 

and U1 

whose �rst columns are x and y respectively: 

V1 

� [x V~ 

1] � U1 

� [y U~ 

1]
 

Show that one way to do this is via Householder transformations, as follows:
 

hh0 

V1 

� I ; 2 � h � x ; [1� 0� : : : � 0]0 

h0h 

and likewise for U1. 

c) Now de�ne A1 

� U1 

0 AV1. Why is kA1k2 

� kAk2� 

d) Note that � � � � 

y0Ax y0AV~ 

1 

� w0 

A1 

� � 

U~ 

1 

0 Ax U~ 

1 

0 AV~ 

1 

0 B 

What is the justi�cation for claiming that the lower left element in the above matrix is 0� 

e) Now show that � � 

kA1 

� k2 

� �2 + w 

0 w 

w 

and combine this with the fact that kA1k2 

� kAk2 

� � to deduce that w � 0, so � � 

� 0 

A1 

� 

0 B 



At the next iteration, we apply the above procedure to B, and so on. When the iterations terminate, 

we have the SVD. 

[The reason that this is only an existence proof and not an algorithm is that it begins by invoking 

the existence of x and y, but does not show how to compute them. Very good algorithms do exist for 

computing the SVD | see Golub and Van Loan's classic, Matrix Computations, Johns Hopkins Press, 

1989. The SVD is a cornerstone of numerical computations in a host of applications.] 

Exercise 4.5 Suppose the m � n matrix A is decomposed in the form � � 

A � U 

� 0 

V 

0 

0 0 

where U and V are unitary matrices, and � is an invertible r � r matrix (| the SVD could be used to 

produce such a decomposition). Then the \Moore-Penrose inverse", or pseudo-inverse of A, denoted 

by A+, can be de�ned as the n � m matrix � � 

�;1 0 

A+ � V U 0 

0 0 

(You can invoke it in Matlab with pinv(A).) 

a) Show that A+A and AA+ are symmetric, and that AA+A � A and A+AA+ � A+ . (These 

four conditions actually constitute an alternative de�nition of the pseudo-inverse.) 

b) Show that when A has full column rank then A+ � (A0A);1A0 , and that when A has full 

row rank then A+ � A0(AA0);1 . 

c) Show that, of all x that minimize ky ; Axk2 

(and there will be many, if A does not have full 

column rank), the one with smallest length kxk2 

is given by x̂ � A+y. 

Exercise 4.6 All the matrices in this problem are real. Suppose � � 

R 

A � Q 

0 

with Q being an m � m orthogonal matrix and R an n � n invertible matrix. (Recall that such a 

decomposition exists for any matrix A that has full column rank.) Also let Y be an m � p matrix of 

the form � � 

Y1Y � Q 

Y2 

where the partitioning in the expression for Y is conformable with the partitioning for A. 



(a)	 What choice X̂ of the n � p matrix X minimizes the Frobenius norm, or equivalently the squared 

Frobenius norm, of Y ; AX � In other words, �nd
 

X̂
 � argmin kY ; AXk2 

F 

Also determine the value of kY ; AX̂k2 

F 

. (Your answers should be expressed in terms of the 

matrices Q, R, Y1 

and Y2.) 

(b)	 Can your X̂ in (a) also be written as (A0A);1A0Y � Can it be written as A+Y , where A+ denotes 

the (Moore-Penrose) pseudo-inverse of A � 

(c) Now obtain an expression for the choice that minimizes 

kY ; AXk2 

F 

+ kZ ; BXk2 

F 

where Z and B are given matrices of appropriate dimensions. (Your answer can be expressed in 

terms of A, B, Y , and Z.) 

Exercise 4.7 Structured Singular Values 

Given a complex square matrix A, de�ne the structured singular value function as follows. 

1 

��(A) � 

min�2�f�max(�) j det(I ; �A) � 0g 

where � is some set of matrices. 

X of X 

a) If � � f�I : � 2 C g, show that ��(A) � �(A), where � is the spectral radius of A, de�ned 

as: �(A) � max i 

j�ij and the �i's are the eigenvalues of A. 

b) If � � f� 2 C 

n�n g, show that ��(A) � �max(A) 

c) If � � fdiag(�1� � � � � � n) j �i 

2 C g, show that 

�(A) � ��(A) � ��(D
;1AD) � �max(D

;1AD) 

where 

D 2 f	 ) j di 

� 0gdiag(d1� � � � � dn

Exercise 4.8 Consider again the structured singular value function of a complex square matrix A 

de�ned in the preceding problem. If A has more structure, it is sometimes possible to compute ��(A) 

exactly. In this problem, assume A is a rank-one matrix, so that we can write A � uv0 where u� v are 

complex vectors of dimension n. Compute ��(A) when 

(a) � � diag(�1� : : : �	 �n)� �i 

2 C . 

(b) � � diag(�1� : : : � �n)� �i 

2 R.
 

To simplify the computation, minimize the Frobenius norm of � in the de�ntion of ��(A).
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