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Chapter 3 

Least Squares Solution of y �� A� x � 

3.1 Introduction 

We turn to a problem that is dual to the overconstrained estimation problems considered so 

far. Let A denote an array of m vectors, A � [a1j � � � jam], where the ai 

are vectors from any 

space on which an inner product is de�ned. The space is allowed to be in�nite dimensional, 

e.g. the space L2 of square integrable functions mentioned in Chapter 2 . We are interested 

in the vector x, of minimum length, that satisfy the equation 

y ��A� x� (1a) 

where we have used the Gram product notation introduced in Chapter 2. 

Example 3.1 Let y[0] denote the output at time 0 of a noncausal FIR �lter whose 

input is the sequence x[k], with 

NX 

y[0] � hix[;i]: 

i�;N 

Describe the set of input values that yield y[0] � 0� repeat for y[0] � 7. The 

solution of minimum energy (or RMS value) is the one that minimizes 

PN
i�;N 

x2[i]. 

3.2 Constructing all Solutions 

When the ai's are drawn from ordinary (real or complex) Euclidean n-space, with the usual 

(unweighted) inner product, A is an n � m matrix of full column rank, and the equation (1a) 

is simply 

y � A0 x � (1b) 



where A0 has full row rank. Since the m rows of A0 in (1b) are independent, this matrix has m 

independent columns as well. It follows that the system (1b), which can be read as expressing 

y in terms of a linear combination of the columns of A0 (with weights given by the components 

of x) has solutions x for any y. 

If A0 were square and therefore (under our rank assumption) invertible, (1b) would have 

a unique solution, obtained simply by premultiplying (1b) by the inverse of A0 . The closest we 

come to having an invertible matrix in the non-square case is by invoking the Gram matrix 

lemma, which tells us that A0A is invertible under our rank assumption. This fact, and 

inspection of (1b), allow us to explicitly write down one particular solution of (1b), which we 

denote by �x: 

x� � A (A0 A);1 y (2a) 

Simple substitution of this expression in (1b) veri�es that it is indeed a solution. We shall 

shortly see that this solution actually has minimum length (norm) among all solutions of (1b). 

For the more general equation in (1a), we can establish the existence of a solution by 

demonstrating that the appropriate generalization of the expression in (2a) does indeed satisfy 

(1a). For this, pick 

x� � A �A� A�;1 y (2b) 

It is easy to see that this satis�es (1a), if we use the fact that �A� A� ���A� A� � for any 

array � of scalars� in our case � is the m � 1 array �A� A�;1 y. 

Any other x is a solution of (1a) i� it di�ers from the particular solution above (or any 

other particular solution) by a solution of the homogeneous equation � A� x �� 0� the same 

statement can be made for solutions of (1b). The proof is easy, and presented below for (1b), 

with x denoting any solution, xp 

denoting a particular solution, and xh 

denoting a solution 

of the homogeneous equation: 

y � A0 xp 

� A0 x ) A0 (x ; xp) � 0 ) x � xp 

+ xh| {z }
xh 

Conversely, 

y � A0 xp 

� A0 xh 

� 0 ) y � A0 |(xp 

+ {z xh}) ) x � xp 

+ xh: 

x 

Equations of the form (1a), (1b) commonly arise in situations where x represents a vector 

of control inputs and y represents a vector of objectives or targets. The problem is then to 

use some appropriate criterion and/or constraints to narrow down the set of controls. 

Example 3.2 Let m � 1, so that A0 is a single nonzero row, which we shall denote 

by a0 . If y � 0, the set of solutions corresponds to vectors x that are orthogonal 

to the vector a, i.e. to vectors in the orthogonal complement of a, namely in the 

subspace Ra�(a). Use this to costruct all solutions to Example 3.1. 



There are several di�erent criteria and constraints that may reasonably be used to select 

among the di�erent possible solutions. For example, in some problems it may be natural to 

restrict the components xi 

of x to be nonnegative, and to ask for the control that minimizes P 

sixi, where si 

represents the cost of control component xi. This is the prototypical form 

of what is termed the linear programming problem. (You should geometrically characterize 

the solution to this problem for the case given in the above example.) The general linear 

programming problem arises in a host of applications. 

We shall focus on the problem of determining the solution x of (1a) for which kxk2 �� 

x� x � is minimized� in the case of (1b), we are looking to minimize x0x. For the situation 

depicted in the above example, the optimum x is immediately seen to be the solution vector 

that is aligned with a. It can be found by projecting any particular solution of (1b) onto the 

space spanned by the vector a. (This fact is related to the Cauchy-Schwartz inequality: For 

x of a speci�ed length, the inner product � a� x � is maximized by aligning x with a, and for 

speci�ed � a� x � the length of x is minimized by again aligning x with a.) The generalization 

to m � 1 and to the broader setting of (1a) is direct, and is presented next. You should note 

the similarity to the proof of the orthogonality principle. 

3.3 Least Squares Solution 

Let x be a particular solution of (1a). Denote by xA 

its unique projection onto the range of 

A (i.e. onto the space spanned by the vectors ai) and let xA� 

denote the projection onto the 

space orthogonal to this. Following the same development as in the proof of the orthogonality 

principle in Lecture 2, we �nd 

xA 

� A �A� A�;1�A� x� (3a) 

with xA� 

� x ; xA. Now (1a) allows us to make the substitution y ��A� x� in (3a), so 

xA 

� A �A� A�;1 y (3b) 

which is exactly the expression we had for the solution x� that we determined earlier by 

inspection, see (2b). 

Now note from (3b) that xA 

is the same for all solutions x, because it is determined 

entirely by A and y. Hence it is only xA� 

that is varied by varying x. The orthogonality of 

xA 

and xA� 

allows us to write 

� x� x � � � xA� xA 

� + � xA� 

� xA� 

� 

so the best we can do as far as minimizing � x� x � is concerned is to make xA� 

� 0. In other 

words, the optimum solution is x � xA 

� x�. 

Example 3.3 For the FIR �lter mentioned in Example 3.1, and considering all in-PNput sequences x[k] that result in y[0] � 7, �nd the sequence for which i�;N 

x2[i] 

is minimized. (Work out this example for yourself!) 



Example 3.4 Consider a unit mass moving in a straight line under the action of 

a force x(t), with position at time t given by p(t). Assume p(0) � 0, p_(0) � 0, and 

suppose we wish to have p(T ) � y (with no constraint on p_(T )). Then Z T 

y � p(T ) � (T ; t)x(t) dt �� a(t)� x(t) � (4) 

0 

This is a typical underconstrained problem, with many choices of x(t) for 0 � t � T 

that will result in p(T ) � y. Let us �nd the solution x(t) for which Z T 

x 

2(t) dt � � x(t)� x(t) � (5) 

0 

is minimized. Evaluating the expression in (2a), we �nd 

x�(t) � (T ; t)y�(T 

3�3) (6) 

How does your solution change if there is the additional constraint that the mass 

should be brought to rest at time T , so that p_(T ) � 0� 

We leave you to consider how weighted norms can be minimized. 



Exercises 

Exercise 3.1 Least Square Error Solution We begin with a mini-tutorial on orthogonal and unitary 

matrices. An orthogonal matrix may be de�ned as a square real matrix whose columns are of unit 

length and mutually orthogonal to each other | i.e., its columns form an orthonormal set. It follows 

quite easily (as you should try and verify for yourself) that: 

�	 the inverse of an orthogonal matrix is just its transpose� 

�	 the rows of an orthogonal matrix form an orthonormal set as well� 

�	 the usual Euclidean inner product of two real vectors v and w, namely the scalar v 

0w, equals 

the inner product of Uv and Uw, if U is an orthogonal matrix | and therefore the length of v, 

namely 

p
v 

0v, equals that of Uv. 

A unitary matrix is similarly de�ned, except that its entries are allowed to be complex | so its inverse 

is the complex conjugate of its transpose. A fact about orthogonal matrices that turns out to be 

important in several numerical algorithms is the following: Given a real m � n matrix A of full column 

rank, it is possible (in many ways) to �nd an orthogonal matrix U such that � � 

R 

U	 A � 

0 

where R is a nonsingular, upper-triangular matrix. (If A is complex, then we can �nd a unitary matrix 

U that leads to the same equation.) To see how to compute U in Matlab, read the comments obtained 

by typing help qr� the matrix Q that is referred to in the comments is just U 0 . 

We now turn to the problem of interest. Given a real m � n matrix A of full column rank, and 

a real m-vector y, we wish to approximately satisfy the equation y � Ax. Speci�cally, let us choose 

the vector x to minimize ky ; Axk2 � (y ; Ax)0(y ; Ax), the squared Euclidean length of the \error" 

y ; Ax. By invoking the above results on orthogonal matrices, show that (in the notation introduced 

earlier) the minimizing x is 

x̂ � R;1 y1 

where y1 

denotes the vector formed from the �rst n components of Uy. (In practice, we would not 

bother to �nd R;1 explicitly. Instead, taking advantage of the upper-triangular structure of R, we 

would solve the system of equations Rx̂ � y1 

by back substitution, starting from the last equation.) 

The above way of solving a least-squares problem (proposed by Householder in 1958, but some-
times referred to as Golub's algorithm) is numerically preferable in most cases to solving the \normal 

equations" in the form ^ � (x A0A);1A0y, and is essentially what Matlab does when you write ^ x � Any. 

An (oversimpli�ed!) explanation of the trouble with the normal equation solution is that it implic-
itly evaluates the product (R0R);1R0, whereas the Householder/Golub method recognizes that this 

product simply equals R;1, and thereby avoids unnecessary and error prone steps. 

Exercise 3.2 Suppose the input sequence fujg and the output sequence fyjg of a particular system 

are related by 

nX 

yk 

� hiuk;i 

i�1 



where all quantities are scalar. 

(i) Assume we want to have yn 

equal to some speci�ed number y�. Determine u0� : : : � un;1 

so as to 

achieve this while minimizing u20 

+ : : : + u2 

n;1. 

(ii) Suppose now that we are willing to relax our objective of exactly attaining yn 

� y�. This leads us 

to the following modi�ed problem. Determine u0� : : : � un;1 

so as to minimize 

r(y� ; yn)
2 + u20 

+ : : : + u2 

n;1 

where r is a positive weighting parameter. 

(a) Solve the modi�ed problem. 

(b)	 What do you expect the answer to be in the limiting cases of r � 0 and r � 1� Show that your 

answer in (a) indeed gives you these expected limiting results. 

Exercise 3.3 Return to the problem considered in Example 3.4. Suppose that, in addition to re-
quiring p(T ) � y for a speci�ed y, we also want p_(T ) � 0. In other words, we want to bring the mass 

to rest at the position y at time T . Of all the force functions x(t) that can accomplish this, determine R T
the one that minimizes � x(t)� x(t) �� 

0 

x2(t) dt. 

Exercise 3.4 (a) Given y � A0x, with A0 of full row rank, �nd the solution vector x for which 

0x Wx is minimum, where W � L0L and L is nonsingular (i.e. where W is Hermitian and posi-
tive de�nite). 

(b)	 A speci�ed current I0 

is to be sent through the �xed voltage source V0 

in the �gure. Find what 

values v1, v2, v3 

and v4 

must take so that the total power dissipation in the resistors is minimized. 
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