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Chapter 1 

Linear Algebra Review
 

1.1 Introduction 

Dynamic systems are systems that evolve with time. Our models for them will comprise 

coupled sets of ordinary di�erential equations (ode's). We will study how the internal variables 

and outputs of such systems respond to their inputs and initial conditions, how their internal 

behavior can be inferred from input/output (I/O) measurements, how the inputs can be 

controlled to produce desired behavior, and so on. Most of our attention will be focused on 

linear models (and within this class, on time invariant models, i.e. on LTI models), for reasons 

that include the following : 

�	 linear models describe small perturbations from nominal operation, and most control 

design is aimed at regulating such perturbations� 

�	 linear models are far more tractable than general nonlinear models, so systematic and 

detailed control design approaches can be developed� 

�	 engineered systems are often made up of modules that are designed to operate in essen-
tially linear fashion, with any nonlinearities introduced in carefully selected locations 

and forms. 

To describe the interactions of coupled variables in linear models, the tools of linear 

algebra are essential. In the �rst part of this course (4 or 5 lectures), we shall come up to 

speed with the \Ax � y" or linear equations part of linear algebra, by studying a variety of 

least squares problems. This will also serve to introduce ideas related to dynamic systems | 

e.g., recursive processing of I/O measurements from a �nite-impulse-response (FIR) discrete-
time (DT) LTI system, to produce estimates of its impulse response coe�cients. 

Later parts of the course will treat in considerable detail the representation, struc-
ture, and behavior of multi-input, multi-output (MIMO) LTI systems. The \Av � �v" 


 



or eigenvalue{eigenvector part of linear algebra enters heavily here, and we shall devote con-
siderable time to it. Along the way, and particularly towards the end of the course, we shall 

thread all of this together by examining approaches to control design, issues of robustness, 

etc., for MIMO LTI systems. 

What you learn in this course will form a valuable, and even essential, foundation for 

further work in systems, control, estimation, identi�cation, signal processing, and communi-
cation. 

We now present a checklist of important notions from linear algebra for you to review, 

using your favorite linear algebra text. Some of the ideas (e.g. partitioned matrices) may be 

new. 

1.2 Vector Spaces 

Review the de�nition of a vector space: vectors, �eld of scalars, vector addition (which 

must be associative and commutative), scalar multiplication (with its own associativity and 

distributivity properties), the existence of a zero vector 0 such that x + 0 � x for every vector 

x, and the normalization conditions 0x � 0, 1x � x. Use the de�nition to understand that 

the �rst four examples below are vector spaces, while the �fth and sixth are not: 

�	 Rn and Cn . 

�	 Real continuous functions f(t) on the real line (8t), with obvious de�nitions of vector 

addition (add the functions pointwise, f(t) + g(t)) and scalar multiplication (scale the 

function by a constant, af(t)). 

�	 The set of m � n matrices. 

�	 The set of solutions y(t) of the LTI ode y(1)(t) + 3y(t) � 0. 

�	 The set of points [ x1 

x2 

x3 

] in R3 satisfying x21 

+ x22 

+ x23 

� 1, i.e. \vectors" from 

the origin to the unit sphere. 

�	 The set of solutions y(t) of the LTI ode y(1)(t) + 3y(t) � sin t. 

A subspace of a vector space is a subset of vectors that itself forms a vector space. To 

verify that a set is a subspace, all we need to check is that the subset is closed under vector 

addition and under scalar multiplication� try proving this. Give examples of subspaces of the 

vector space examples above. 

�	 Show that the range of any real n �m matrix and the nullspace of any real m �n matrix 

are subspaces of Rn . 

�	 Show that the set of all linear combinations of a given set of vectors forms a subspace 

(called the subspace generated by these vectors, also called their linear span). 



�	 Show that the intersection of two subspaces of a vector space is itself a subspace. 

�	 Show that the union of two subspaces is in general not a subspace. Also determine 

under what condition the union of subspaces will be a subspace. 

�	 Show that the (Minkowski or) direct sum of subspaces, which by de�nition comprises 

vectors that can be written as the sum of vectors drawn from each of the subspaces, is 

a subspace. 

Get in the habit of working up small (in R2 or R3, for instance) concrete examples for yourself, 

as you tackle problems such as the above. This will help you develop a feel for what is being 

stated | perhaps suggesting a strategy for a proof of a claim, or suggesting a counterexample 

to disprove a claim. 

Review what it means for a set of vectors to be (linearly) dependent or (linearly) in-

dependent. A space is n-dimensional if every set of more than n vectors is dependent, but 

there is some set of n vectors that is independent� any such set of n independent vectors is 

referred to as a basis for the space. 

�	 Show that any vector in an n-dimensional space can be written as a unique linear 

combination of the vectors in a basis set� we therefore say that any basis set spans the 

space. 

�	 Show that a basis for a subspace can always be augmented to form a basis for the entire 

space. 

If a space has a set of n independent vectors for every nonnegative n, then the space is 

called in�nite dimensional. 

�	 Show that the set of functions f(t) � tn;1 � n � 1� 2� 3� � � � forms a basis for an in�nite 

dimensional space. (One route to proving this uses a key property of Vandermonde 

matrices, which you may have encountered somewhere.) 

Norms 

The \lengths" of vectors are measured by introducing the idea of a norm. A norm for a vector 

space V over the �eld of real numbers R or complex numbers C is de�ned to be a function that 

maps vectors x to nonnegative real numbers kxk, and that satis�es the following properties: 

1. Positivity: kxk � 0 for x 6� 0 

2. Homogeneity: kaxk � jaj kxk � scalar a. 

3. Triangle inequality: kx + yk � kxk + kyk � 8x� y 2 V: 



� 1 

� Verify that the usual Euclidean norm on Rn or Cn (namely 

p
x0x with 

0 denoting the 

complex conjugate of the transpose) satis�es these conditions. 

�	 A complex matrix Q is termed Hermitian if Q0 � Q� if Q is real, then this condition 

simply states that Q is symmetric. Verify that x0Qx is always real, if Q is Hermitian. 

A matrix is termed positive de�nite if x0Qx is real and positive for x � 0. 6 Verify that p
x0Qx constitutes a norm if Q is Hermitian and positive de�nite. P �	 Verify that in Rn both kxk1 

� 

n jxij and kxk1 

� maxi 

jxij constitute norms. These1 

are referred to as the 1-norm and 1-norm respectively, while the examples of norms 

mentioned earlier are all instances of (weighted or unweighted) 2-norms. Describe the 

sets of vectors that have unit norm in each of these cases. 

�	 The space of continuous fucntions on the interval [0� 1] clearly forms a vector space. 

One possible norm de�ned on this space is the 1-norm de�ned as: 

kfk1 

� sup jf(t)j: 

t2[0�1] 

This measures the peak value of the function in the interval [0� 1]. Another norm is the 

2-norm de�ned as: �Z 1 2 

kfk2 

� jf(t)j2dt : 

0 

Verify that these measures satisfy the three properties of the norm. 

Inner Product 

The vector spaces that are most useful in practice are those on which one can de�ne a notion 

of inner product. An inner product is a function of two vectors, usually denoted by � x� y � 

where x and y are vectors, with the following properties: 

1. Symmetry: � x� y � � � y� x �0 . 

2. Linearity: � x� ay + bz � � a � x� y � + b � x� z � for all scalars a and b. 

3. Positivity: � x� x � positive for x 6� 0. 

�	 Verify that 

p
� x� x � de�nes a norm. 

�	 Verify that x0Qy constitutes an inner product if Q is Hermitian and positive de�nite. 

The case of Q � I corresponds to the usual Euclidean inner product. 

�	 Verify that Z 1 

x(t)y(t)dt 

0 

de�nes an inner product on the space of continuous functions. In this case, the norm 

generated from this inner product is the same as the 2-norm de�ned earlier. 



�	 Cauchy-Schwartz Inequality Verify that for any x and y in an inner product space 

j � x� y � j � kxkkyk 

with equality if and only if x � �y for some scalar �. (Hint: Expand � x+�y� x+�y �). 

Two vectors x, y are said to be orthogonal if � x� y �� 0� two sets of vectors X and Y 

are called orthogonal if every vector in one is orthogonal to every vector in the other. The 

orthogonal complement of a set of vectors X is the set of vectors orthogonal to X , and is 

denoted by X 

� . 

�	 Show that the orthogonal complement of any set is a subspace. 

1.3 The Projection Theorem 

Consider the following minimization problem: 

min ky ; mk 

m2M 

where the norm is de�ned through an inner product. The projection theorem (suggested by 

the �gure below), states that the optimal solution m̂ is characterized as follows: 

(y ; m̂) � M: 

To verify this theorem, assume the converse. Then there exists an m0, km0k � 1, such 

m� m0 

�� � 6 m + �m0) 2 M achieves a smaller value to that � y ; ^ � 0. We now argue that ( ^ 

the above minimization problem. In particular, 

ky ; m̂	 ; �m0k2	 � ky ; m̂ k2; � y ; m� �m^ 0 

� ; � �m0� y ; m̂ � +j�j2km0k2 

� ky ; m̂ k2 ; j�j2 ; j�j2 + j�j2 

� ky ; m̂k2 ; j�j2 

This conradicts the optimality of m̂. 

�	 Given a subspace S, show that any vector x can be uniquely written as x � xS 

+ xS� 

, 

where xS 

2 S and xS� 

2 S� . 
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1.4 Matrices 

Our usual notion of a matrix is that of a rectangular array of scalars. The de�nitions of matrix 

addition, multiplication, etc., are aimed at compactly representing and analyzing systems of 

equations of the form 

a11x1 

+ � � � + a1nxn 

� y1 

. � � � 

.. 

am1x1 

+ � � � + amnxn 

� ym 

This system of equations can be written as Ax � y if we de�ne 101010 

a11 

� � � a1n 

x1 

y1 

A �


B@


CA


� x �
B@


CA


� y �
B@


CA


. .
 .
 .
 

.
.
. .
� � �
.
 .
 .
 

xn 

.


ym 


 
 
 
 
 
 

am1 

� � � amn 

The rules of matrix addition, matrix multiplication, and scalar multiplication of a matrix 

remain unchanged if the entries of the matrices we deal with are themselves (conformably 

dimensioned) matrices rather than scalars. A matrix with matrix entries is referred to as a 

block matrix or a partitioned matrix. 

For example, the aij, xj, and yi 

in respectively A, x, and y above can be matrices, and 

P 

the equation Ax � y will still hold, as long as the dimensions of the various submatrices are 

conformable with the expressions aijxj 

� yi 

for i � 1� � � � �m and j � 1� � � � � n. What this 

requires is that the number of rows in aij 

should equal the number of rows in yi, the number 

of columns in aij 

should equal the number of rows in xj , and the number of columns in the 

xj 

and yi 

should be the same. 

� Verify that 
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In addition to these simple rules for matrix addition, matrix multiplication, and scalar 

multiplication of partitioned matrices, there is a simple | and simply veri�ed | rule for 

(complex conjugate) transposition of a partitioned matrix: if [A]ij 

� aij , then [A0]ij 

� a0 

ji, 

i.e., the (i� j)-th block element of A0 is the transpose of the (j� i)-th block element of A. 

For more involved matrix operations, one has to proceed with caution. For instance, the 

determinant of the square block-matrix �
 !
 

A � 

A1 

A3 

A2 

A4 

is clearly not A1A4 

; A3A2 

unless all the blocks are actually scalar! We shall lead you to 

the correct expression (in the case where A1 

is square and invertible) in a future Homework. 

Matrices as Linear Transformations 

T is a transformation or mapping from X to Y , two vector spaces, if it associates to each 

x 2 X a unique element y 2 Y . This transformation is linear if it satis�es 

T (�x + �y) � �T (x) + �T (y): 

� Verify that an n � m matrix A is a linear transformation from Rm to Rn . 

Does every linear transformation have a matrix representation� Assume that both X and Y 

Pare �nite dimensional spaces with respective bases fx1� : : : xmg and fy1� : : : y ng. Every x 2 X 

m very x is represented uniquely in can be uniquely expressed as: x � Equivalently, i�1 

aixi. e 

terms of an element a 2 Rm PSimilarly every element y 2 Y 

of an element b 2 Rn . Now: T (xj) � 

n
i�1 

bijyi 

and hence 

is uniquely represented in terms .


m n mXXX
T (x) � ajT (xj) � yi( ajbij) 

j�1 i�1 j�1 

A matrix representation is then given by B � (bij). It is evident that a matrix representation 

is not unique and depends on the basis choice. 


 



1.5 Linear Systems of Equations 

Suppose that we have the following system of real or complex linear equations: 

Am�n n�1 � y 

m�1 x 

When does this system have a solution x for given A and y� 

9 a solution x () y 2 R(A) () R([A y]) � R(A) 

We now analyze some possible cases: 

(1) If n � m, then det(A) 6 y, and x is the unique solution. � 0 ) x � A;1

(2) If m � n, then there are more equations than unknowns, i.e. the system is \overcon-
strained". If A and/or y re�ect actual experimental data, then it is quite likely that the 

n-component vector y does not lie in R(A), since this subspace is only n-dimensional 

(if A has full column rank) or less, but lives in an m-dimensional space. The system 

will then be inconsistent. This is the sort of situation encountered in estimation or 

identi�cation problems, where x is a parameter vector of low dimension compared to 

the dimension of the measurements that are available. We then look for a choice of x 

that comes closest to achieving consistency, according to some error criterion. We shall 

say quite a bit more about this shortly. 

(3) If m � n, then there are fewer equations than unknowns, and the system is \undercon-
strained". If the system has a particular solution xp 

(and when rank(A) � m, there is 

guaranteed to be a solution for any y) then there exist an in�nite number of solutions. 

More speci�cally, x is a solution i� (if and only if) 

x � xp 

+ xh 

� Axp 

� y � Axh 

� 0 i:e: xh 

2 N (A) 

Since the nullspace N (A) has dimension at least n ; m, there are at least this many 

degrees of freedom in the solution. This is the sort of situation that occurs in many 

control problems, where the control objectives do not uniquely constrain or determine 

the control. We then typically search among the available solutions for ones that are 

optimal according to some criterion. 


 



Exercises


Exercise 1.1 Partitioned Matrices 

Suppose � � 

A � 

A1 

0 

A2 

A4 

with A1 

and A4 

square. 

(a) Write the determinant det A in terms of det A1 

and det A4. (Hint: Write A as the product � � � � 

I 0 A1 

A2 

0 A4 

0 I 

and use the fact that the determinant of the product of two square matrices is the product of 

the individual determinants | the individual determinants are easy to evaluate in this case.) 

(b)	 Assume for this part that A1 

and A4 

are nonsingular (i.e., square and invertible). Now �nd A;1 . 

(Hint: Write AB � I and partition B and I commensurably with the partitioning of A.) 

Exercise 1.2 Partitioned Matrices 

Suppose � � 

A1 

A2A � 

A3 

A4 

where the Ai 

are matrices of conformable dimension. 

(a) What can A be premultiplied by to get the matrix � � 

A3 

A4 � 

A1 

A2 

(b) Assume that A1 

is nonsingular. What can A be premultiplied by to get the matrix � � 

A1 

A2 

0 C 

where C � A4 

; A3A
;1A2 

�1 

(c)	 Suppose A is a square matrix. Use the result in (b) | and the fact mentioned in the hint to 

Problem 1(a) | to obtain an expression for det(A) in terms of determinants involving only the 

submatrices A1, A2, A3, A4. 

Exercise 1.3 Matrix Identities 

Prove the following very useful matrix identities. In proving identities such as these, see if you 

can obtain proofs that make as few assumptions as possible beyond those implied by the problem 

statement. For example, in (1) and (2) below, neither A nor B need be square, and in (3) neither B 

nor D need be square | so avoid assuming that any of these matrices is (square and) invertible!. 


 



(a) det(I ; AB) � det(I ; BA), if A is p � q and B is q � p. (Hint: Evaluate the determinants of � �
 � �


I A I ;A I ;A I A 

� 

B I 0 I 0 I B I 

to obtain the desired result). One common situation in which the above result is useful is when 

p � q� why is this so� 

(b) Show that (I ; AB);1A � A(I ; BA);1 . 

(c)	 Show that (A + BCD);1 � A;1 ; A;1B(C;1 + DA;1B);1DA;1 . (Hint: Multiply the right side 

by A + BCD and cleverly gather terms.) This is perhaps the most used of matrix identities, and 

is known by various names | the matrix inversion lemma, the ABCD lemma (!), Woodbury's 

formula, etc. It is rediscovered from time to time in di�erent guises. Its noteworthy feature is 

that, if A;1 is known, then the inverse of a modi�cation of A is expressed as a modi�cation of 

A;1 that may be simple to compute, e.g. when C is of small dimensions. Show, for instance, 

that evaluation of (I ; abT );1, where a and b are column vectors, only requires inversion of a 

scalar quantity. 

Exercise 1.4 Range and Rank 

This is a practice problem in linear algebra (except that you have perhaps only seen such results 

stated for the case of real matrices and vectors, rather than complex ones | the extensions are routine). 

Assume that A 2 Cm�n (i.e., A is a complex m � n matrix) and B 2 Cn�p. We shall use the 

symbols R(A) and N (A) to respectively denote the range space and null space (or kernel) of the matrix 

A. Following the Matlab convention, we use the symbol A0 to denote the transpose of the complex 

conjugate of the matrix A� R�(A) denotes the subspace orthogonal to the subspace R(A), i.e. the set 

of vectors x such that x0y � 0 � 8y 2 R(A), etc. 

(a) Show that R�(A) � N (A0) and N 

�(A) � R(A0). 

(b)	 Show that 

rank(A) + rank(B) ; n � rank(AB) � minfrank(A)� rank(B)g 

This result is referred to as Sylvester's inequality. 

Exercise 1.5 Vandermonde Matrix 

A matrix with the following structure is referred to as a Vandermonde matrix: 

1 �1 

�2 

1 

� � � �n;1 

1 

1 �2 

�2 

2 

� � � �n;1 

2 

. . . . . . 

. . 

. . � � � 

. . 

1 �n 

�2 

n 

� � � �n;1 

n 

�
�
�
�


1
0
 CCCA


BBB@




This matrix is clearly singular if the �i 

are not all distinct. Show the converse, namely that if all n of 

the �i 

are distinct, then the matrix is nonsingular. One way to do this | although not the easiest! 

| is to show by induction that the determinant of the Vandermonde matrix is 

i�j�nY 

(�j 

; �i) 

i�1 � j�i 

Look for an easier argument �rst. 

Exercise 1.6 Matrix Derivatives 

(a)	 Suppose A(t) and B(t) are matrices whose entries are di�erentiable functions of t, and assume the 

product A(t)B(t) is well-de�ned. Show that 

d 

� � dA(t) dB(t)
A(t)B(t) � B(t) + A(t)

dt	 dt dt 

where the derivative of a matrix is, by de�nition, the matrix of derivatives | i.e., to obtain the 

derivative of a matrix, simply replace each entry of the matrix by its derivative. (Note: The 

ordering of the matrices in the above result is important!). 

(b)	 Use the result of (a) to evaluate the derivative of the inverse of a matrix A(t), i.e. evaluate the 

derivative of A;1(t). 

Exercise 1.7 Suppose T is a linear transformation from X to itself. Verify that any two matrix 

representations, A and B, of T are related by a nonsingular transformation� i.e., A � R;1BR for some 

R. Show that as R varies over all nonsingular matrices, we get all possible representations. 

Exercise 1.8 Let X be the vector space of polynomials of order less than or equal to M . 

(a) Show that the set B � f1� x� : : : xM g is a basis for this vector space. 

(b) Consider the mapping T from X to X de�ned as: 

f(x) � Tg(x) � g(x)
dx 

1. Show that T is linear. 

2. Derive a matrix representation for T in terms of the basis B. 

3. What are the eigenvalues of T . 

4. Compute one eigenvector associated with one of the eighenvalues. 

d 
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