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Stabilization

@ The state of a reachable system can be steered to any desired state in finite
time, even if the system is “unstable.”

@ However, an “open-loop” control strategy depends critically on a number of
assumptions:

e Perfect knowledge of the model;
o Perfect knowledge of the initial condition;
e No input constraints.

@ It is necessary to use some information on the actual system state in the
computation of the control input: i.e., feedback.

@ Feedback can also improve the performance of stable systems... but done
incorrectly, can also make things worse, most notably, make stable systems
unstable.
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State Feedback

@ Assume we can measure all components of a system's state, i.e., consider a
state-space model of the form (A, B, /,0).

@ Assume a linear control law of the form u = Fx + v.
@ In CT, the closed-loop system model is (A + BF, B, /,0).

@ Hence, it is clear that the closed-loop system is stable if and only if the
eigenvalues of A — BF are all in the open left-half plane (or all inside the unit
circle, in the DT time case).
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Eigenvalue Placement

Theorem

There exists a matrix F such that

n

det(\ — (A+ BF)) = [ (A — )
i=1

for any arbitrary self-conjugate set of complex numbers 1, ..., u, € C if and only
if (A, B) is reachable.

Proof (necessity):

@ Suppose \; is an unreachable mode, and let w; be the associated left
eigenvector. Hence, w;’ A= \;w.”, and w;” B = 0.

@ Then,
w"(A+ BF) = w A+ w BF = \jw;” +0,

i.e., \j is an eigenvalue of A+ BF for any F!
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Eigenvalue Placement

Proof — Sufficiency:

@ Assuming the system is reachable, find a feedback such that the closed-loop
poles are at the desired locations. We will prove this only for the single-input
case.

o If the system is reachable, then w.l.g. we can assume its realization is in the
controller canonical form: the coefficients of the characteristic polynomial are
a1, a2, .... dp.

@ The coefficients of the closed-loop characteristic polynomial are (a; — f;), etc.

@ Just choose f; =a; —af, i=1,...,n.
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Ackermann Formula

F =—[0,0,...,1]R; *a(A).
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Observers

@ What if we cannot measure the state?

@ Design a model-based observer, i.e., a system that contains a simulation of
the system, and tries to match its state.

d&/dt = A% + Bu — L(y — 9).

@ Error dynamics: e = x — X:

e=x-X=Ax+Bu—Ax—Bu+L(y—9)=(A+LC)e.

@ Same results (dual) as for reachability.
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Eigenvalue placement

Theorem

There exists a matrix L such that

n

det(A — (A+ LC)) = [ (A — )

i=1

for any arbitrary self-conjugate set of complex numbers 1, ..., u, € C if and only
if (C,A) is observable.

y

@ Ackermann formula:

L=—-a%(A)0,*!

n
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Model-based output-feedback controller

—model-based controller block diagram—

@ We have

X =Ax+ Bu= Ax+ B(r+ FX) = Ax+ BFx + Br

@ now define X = x — X:

% = (A+ BF)x — BF% + Br

@ In summary:

el = [T i e
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Synthesis of model-based output feedback controller

@ Poles of the closed-loop = c.l. poles of the controller U c.l. poles of the
observer.

@ Separation principle: can design controller and observer independently!
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Parameterization of all stabilizing controllers (SISO case)

@ Consider the feedback interconnection of a plant G and a controller K.

@ Write the plant transfer function as G(s) = N(s)/M(s), and the controller
transfer function as K(s) = Y(s)/X(s).

@ This can always be done in such a way that N(s), M(s), and Y(s), X(s) are
stable transfer functions—even in the case in which G and/or K are
themselves unstable.

@ The closed-loop system is (externally) stable if and only if
G(s) K(s) K(s)G(s)
1+ K(s)G(s)’ 1+ K(s)G(s)’ 1+ K(s)G(s)

are stable transfer functions.

@ Note that the transfer functions above can be rewritten as:
N(s)X(s) M(s)Y (s) N(s)Y(s)
D(s) ’ D(s) D(s) -

where D(s) = M(s)X(s) — N(s)Y(s).
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Bezout's identity

@ In other words, since the terms appearing at the numerators are all products
of stable transfer functions (and hence stable transfer functions), a necessary
and sufficient condition for the stability of the interconnection is that 1/D(s)
is a stable transfer function.

@ In other words, D(s) = M(s)X(s) — N(s)Y(s) must have no zeroes in the
open left half-plane (CT), or in the unit disk (DT).

e It turns out that one can, without loss of generality !, set D(s) =1, in which
case we get the so-called Bezout's identity

M(s)X(s) — N(s)Y(s) = 1.

1You can see this by writing Y’(s) = Y(s)/D(s), and X'(s) = X(s)/D(s). Clearly, this is
still a valid way of expressing K(s), i.e., K(s) = Y’(s)/X'(s), and both Y’(s) and X'(s) are
stable transfer functions. Writing down the stability condition in this case and simplifying, you
get Bezout's identity.
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Youla's ) parameterization

Let G(s) = N(s)/M(s), and let Ko(s) = Yo(s)/Xo(s), with N(s), M(s), Yo(s),
and Xo(s) stable transfer functions, be a stabilizing feedback controller, and such
that

M(s)Xo(s) — N(s) Yo(s) = 1.

Then all feedback stabilizing controllers for G are given by

_ Yo(s) — M(s)Q(s)
Xo(s) — N(5)Q(s)’

where Q(s) is an arbitrary stable transfer function.

K(s)

Note that with this parameterization, the |/O transfer functions are affine in Q:
o r—y: N(s)(Xo(s) — N(s)Q(s));
o d— u: M(s)(Yo(s) — M(s)Q(s));
o d = y: M(s)(Xo(s) — N(5)Q(5)).
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Youla's ) parameterization—proof

e For any stable Q, Y(s) = Yo(s) — M(s)Q(s) and X(s) = Xo(s) — N(s)Q(s)
are stable, and the proposed controller K(s) = Y(s)/X(s) is stable:
M(s)X(s)=N(s) Y (s) = M(s)(Xo(s)—N(s)Q(s))—N(s)(Yo(s)—M(s)Q(s))
= M(s)Xo(s) — M(s)N(s)Q(s) — N(s)Yo(s) + N(s)M(s)Q(s) = 1.
o Conversely, assume Ki(s) = Yi(s)/Xi(s) is a stabilizing controller, such that
M(s)X1(s) — N(s)Yi(s) = 1. Then
Yi(s) _ Yo(s) = M(s)Q(s)

Xi(s)  Xo(s) = N(s)Q(s)

implies that
Y1(s)Xo(s) — Ya(s)N(s)Q(s) = Xa(s) Yo(s) — Xa(s)M(s)Q(s)
Rearranging, we get
Y1(s)Xo(s) — Xa(s) Yo(s) = Yi(s)N(s)Q(s) — Xa(s)M(s)Q(s) = Q(s)-
Since the transfer function on the left is a stable transfer function, this

completes the proof.
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Youla's @ parameterization — block diagram

@ Set u = FX+r+v, where v is the output of a stable system Q with input y—y:

r u Y
@) Pls) -
+
() + F Observer
+
o +
t ——0
Q(s) D
€

@ You can show (see, e.g., exercise 29.6 in the textbook) that this block
diagram corresponds to the Youla parameterization described previously in
algebraic terms.

@ This parameterizes all possible stabilizing LTI output feedback controllers,
i.e., LTI maps from y to u.
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