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Minimal Realizations


We have seen in the previous lectures how to obtain minimal realizations 
from non-minimal realizations (i.e., keeping the reachable and observable part 
from the Kalman decomposition), and also algorithms to construct minimal 
realizations of a transfer functions. 

Minimal realizations are unique up to similarity transformations. 

However, there are some realizations that are more useful than others, for a 
number of reasons 

Kalman decomposition 

Standard forms 

Canonical forms


. . .


In this lecture we will consider what is known as balanced realization. 
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The Hankel Operator  


Consider for simplicity a discrete-time system G with state-space realization 
(A, B, C , D), and transfer function H(z), with impulse response 
(H0, H1, H2, . . .). 

How do outputs at time steps k ≥ 0 depend on inputs at time steps k < 0? ⎤⎡ 
H0 H1 H2 · · · ⎤⎡ ⎤⎡ 

y [0] u[−1] 
u[−2]

⎥⎥⎥⎥⎦ 

⎢⎢⎢⎢⎣ 

H1 H2⎢⎢⎢⎣ 

⎥⎥⎥⎦ 

⎢⎢⎢⎣ 

⎥⎥⎥⎦ 

y [1] · · · 

H2 
. . . 

. . . · · · 

· · · 
= Huy+ = = y [2] u[−3] −, 

. . . . . . . 
. . . 

. . . 
. . . 

. . 

the Hankel operator H transforms past inputs u− into future outputs y+. 
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� � 

Structure of the Hankel Operator 

Recall that H0 = D, and Hk = CAk−1B. The Hankel operator can be written 
as ⎤⎡ ⎤⎡H0 H1 H2 · · · C ⎢⎢⎢⎢⎣ 

⎥⎥⎥⎥⎦ 
= 

⎢⎢⎢⎣ 

CA 
CA2 

H1 H2 ⎥⎥⎥⎦ 

· · · · · · 
B AB A2B = O∞R· · · H = . . 

H2 .. . . · · · ∞ 

. . . . . . . . . . . . . . . 

Since (A, B, C , D) is a minimal realization, Rank(H) = n. 

In particular, H will have exactly n non-zero singular values, which are also 
called the Hankel singular values of the system G . 
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� � 

Computation of the Hankel singular values 

Recall that, given the properties of singular values, 

σi (H) = λi (HHT ) = λi (HT H). 

Notice that 
T = O∞R∞RT OT = O∞POTHH ∞ ∞ ∞ 

T T TThe (DT) reachability Gramian P R R satisfies APA P BB− −= = .∞

T T T TO O PO QPO= = ∞ ∞

Similarly, Q = OT O∞, and AT QA − Q = 
∞ 

−C T C .∞

Since HHT wi = σi 
2wi by definition, we also have 

wi∞∞∞
T 2 TOσ= i ∞OHH wi wi wi . 

In other words, 
σi (H) = σi (PQ), i = 1, . . . , n. 

the Hankel singular values can be easily computed from the knowledge of the 
reachability and observability Gramians. 
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Hankel norm of a system


Consider bounded-energy “past” input signals �u−�2 < ∞. How much does 
the energy of the past input get amplified in the energy of the “future” 
output signal �y+�2? 

This is an induced 2-norm, called the Hankel norm: 

�G�H := sup 
�y+�2 

. 
=0�u−�2 � �u−�2 

This can be computed easily as �G �H = σmax(H) = σmax(PQ).


Note that, for any system G , �G �H ≤ �G�∞.


The state x [0], depending on the realization, separates past and future:

The energy necessary to drive the system to x [0] (i.e., �u−�2) is determined

by (the inverse of) the reachability Gramian P.

The energy in the output from x [0] (i.e., �y+�2) is determined by the

observability Gramian Q.

(Note that �y+�22 = x [0]T CT Cx [0] + x [0]T AT C T CAx [0] + . . . = x [0]T Qx [0],

similarly for the control effort.)
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Balanced Realization


It is of interest to “balance” the energy allocation between past control effort 
and future output energy, i.e., to equalize P and Q. 

A balanced realization is such that P = Q = diag(σ1, σ2, . . .). 

Can we find a similarity transformation T such that the realization is

balanced?


Recall (A, B, C , D) (T −1AT , T −1B, CT , D).→ 

Gramians are transformed as 

APAT − P = −BBT → T −1 PT T AT T −T − P̂ = −T −1BBT −T ,AT ˆ


i.e., P T −1PT −T = P̂. Similarly, Q T T QT = Q̂.
→ → 
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Balanced Realization 

We would like P̂Q̂ = diag(σ1
2, σ2

2, . . . , σn
2) = Σ2 . In other words, 

T −1PT −T T T QT = T −1PQT = Σ2 . 

Since Q is positive definite, one can find a matrix R such that Q = RT R. 
Hence, 

T −1PRT RT = (RT )−1RPRT (RT ) = Σ2 

RPRT is symmetric and positive definite, and can be diagonalized by an 
orthogonal matrix U, such that 

RPRT = UΣ2UT . 

Choose T = R−1UΣ1/2; then,


P̂ = Σ−1/2UT RPRT UΣ−1/2 = Σ,


and similarly for Σ.
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Model Reduction


Assume that we have a stable system G , with a minimal realization of order 
n >> 1. 

It is desired to find a reduced-order model (of order k < n) in such a way 
that some “error” is reduced. 

A possible criterion is to find the reduced-order model that minimizes the 
Hankel norm of the error, i.e., such that �G − G k �H is minimized. 

Clearly �G − G k �H ≥ σk+1(H). 

It is possible to compute a model that achieves exactly this bound (Glover 
’84), but the procedure will not be covered in this course (see, e.g., 6.242). 

E. Frazzoli (MIT) Lecture 22: Balanced Realization April 27, 2011 9 / 10 



� 

Model reduction through balanced truncation


A commonly used procedure for model reduction is based on the balanced 
realization. 

Idea: remove from the system matrices (in the balanced realization) the 
blocks corresponding to the smaller Hankel singular values. ⎡ ⎤ � � A11 A12 B1 � � 

Σ = 
Σ1 0 

G : ⎣A21 A22 B2⎦ G k : 
A11 B1 

0 Σ2 
→ → 

C1 D 
C1 C2 D 

If Σ1 and Σ2 do not contain any common elements, then the two resulting 
systems (in particular, the reduced-order model) will be stable. 

We have the following bounds: 

σk+1(H) ≤ �G − G k �H ≤ �G − G k �∞ ≤ 2 σl (H). 
l>k 
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