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Minimal Realizations

@ We have seen in the previous lectures how to obtain minimal realizations
from non-minimal realizations (i.e., keeping the reachable and observable part
from the Kalman decomposition), and also algorithms to construct minimal
realizations of a transfer functions.

@ Minimal realizations are unique up to similarity transformations.

@ However, there are some realizations that are more useful than others, for a
number of reasons

o Kalman decomposition
e Standard forms
e Canonical forms

@ In this lecture we will consider what is known as balanced realization.
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The Hankel Operator

o Consider for simplicity a discrete-time system G with state-space realization
(A, B, C, D), and transfer function H(z), with impulse response
(Ho, Hy1, Ho, . . .).

@ How do outputs at time steps k > 0 depend on inputs at time steps k < 07

[0] Hy Hi Hy --- u[~1]
i[ll Hy Hy - - u[=2]
o=y = g, o e L] |ul-3]] = M

o the Hankel operator H transforms past inputs u_ into future outputs y. .
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Structure of the Hankel Operator

o Recall that Hy = D, and H, = CA*~1B. The Hankel operator can be written

as
Hy Hy Hy --- c
Hy Hy - - CA
H: . .. . = CA2 [B AB AZB "'] :OOOROO

Ho

@ Since (A, B, C, D) is a minimal realization, Rank(#) = n.

@ In particular, H will have exactly n non-zero singular values, which are also
called the Hankel singular values of the system G.
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Computation of the Hankel singular values

@ Recall that, given the properties of singular values,

0i(H) = \JN(HHT) = \[N(HTH).

@ Notice that
o HHT = OuRwRLOL = 0.,POL
o The (DT) reachability Gramian P = R, RL satisfies APAT — P = —BB".
Similarly, @ = 0L 0u, and ATQA—Q =—-C'C.

@ Since HH w; = 0,~2W,- by definition, we also have
OrHH " w; = 0L 0.,POLw; = QPOL w; = 6?0 w;.

@ In other words,

oi(H) = 0i(PQ), i=1,...,n.

the Hankel singular values can be easily computed from the knowledge of the
reachability and observability Gramians.
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Hankel norm of a system

o Consider bounded-energy “past” input signals ||u_]||2 < co. How much does
the energy of the past input get amplified in the energy of the “future”
output signal ||y |27

@ This is an induced 2-norm, called the Hankel norm:

IGllni= sup el
lu_foz0 [lu—l2

@ This can be computed easily as ||G||4 = Tmax(H) = omax(PQ).
o Note that, for any system G, ||G|ln < ||Glloo-
@ The state x[0], depending on the realization, separates past and future:
o The energy necessary to drive the system to x[0] (i.e., ||u—||2) is determined
by (the inverse of) the reachability Gramian P.
o The energy in the output from x[0] (i.e., ||y+||2) is determined by the
observability Gramian Q.
(Note that ||y |3 = x[0]" CT Cx[0] + x[0]" AT CT CAx[0] + ... = x[0]" Qx]0],
similarly for the control effort.)
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Balanced Realization

@ It is of interest to “balance” the energy allocation between past control effort
and future output energy, i.e., to equalize P and Q.

@ A balanced realization is such that P = Q = diag(o1, 02,...).

@ Can we find a similarity transformation T such that the realization is
balanced?

o Recall (A,B,C,D) — (T7'AT,T'B,CT, D).
o Gramians are transformed as
APAT —p=-BB" — T 'ATPT'ATT T —P=-T'BBT ',

ie, P— T !PT~ =P. Similarly, Q = TTQT = Q.
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Balanced Realization

e We would like PQ = diag(02,02,...,02) = ¥2. In other words,
TPT-TTTQT = T1PQT = X2

@ Since Q is positive definite, one can find a matrix R such that @ = RTR.

Hence,
T 'PRTRT = (RT) 'RPRT(RT) = £?

e RPRT is symmetric and positive definite, and can be diagonalized by an
orthogonal matrix U, such that

RPRT = UX2UT.
@ Choose T = R~1UXY/2; then,
P=xY2UTRPRTUL Y2 =%,

and similarly for ¥.

E. Frazzoli (MIT) Lecture 22; Balanced Realization April 27, 2011 8 /10



Model Reduction

@ Assume that we have a stable system G, with a minimal realization of order
n>>1.

@ It is desired to find a reduced-order model (of order k < n) in such a way
that some “error” is reduced.

@ A possible criterion is to find the reduced-order model that minimizes the
Hankel norm of the error, i.e., such that |G — G*||;y is minimized.

o Clearly ||G — GX||y > oxs1(H).

@ It is possible to compute a model that achieves exactly this bound (Glover
'84), but the procedure will not be covered in this course (see, e.g., 6.242).
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Model reduction through balanced truncation

@ A commonly used procedure for model reduction is based on the balanced
realization.

@ |dea: remove from the system matrices (in the balanced realization) the
blocks corresponding to the smaller Hankel singular values.

All A12 Bl
2 = |:201 ZO:| — G: A21 A22 Bz — Gk : |:ACH %:l
2 G G D !

e If X1 and ¥, do not contain any common elements, then the two resulting
systems (in particular, the reduced-order model) will be stable.

@ We have the following bounds:

okr1(H) <116 = G¥ln < |G = G| <2 0u(H).
I>k
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