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Reachable/(un)observable subspaces

Recall:

@ The set of reachable states is a subspace of the state space R”, given by

Ra(R,) := Ra ([A"1B|...|AB|B]).

@ The set of unobservable states is a subspace of the state space R”, given by

C
Null(O,) := Null A

CA"71

@ Both the reachable space and the unobservable space are A invariant, i.e., if
x is reachable (resp., unobservable) so is Ax.
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Kalman Decomposition

@ Construct an invertible matrix in the following way:

T = [Tr TF] = [Tra Tro TFE TTO] )
where

o the columns of T, = [T,5T,] form a basis for the reachable space. In
particular, the columns of T, are also in the unobservable space.

o the columns of T#[T#s T75] complement the reachable space. In particular, the
columns of Tz are also in the unobservable space.

o Note that any of the matrices appearing in the definition of T may in fact
have 0 columns, i.e., not be present in particular instances (e.g., for reachable
and observable systems, one would only have T,,)

@ Use the matrix T for a similarity transformation:

(A,B,C,D) — (T *AT, T7'B,CT,D) = (A, B, C,D);

this is called the Kalman decomposition.
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Kalman Decomposition — structure of the system matrix

@ Based on the definition of T, one can write

ORI AT

An Az Az A
A Ax A Ax
A1 Az Az Ay
A A Ap Ay

A [Tré Tro TFT) TTO] = [Trb Tro TT(‘) TFO]

@ Since the range of T, is A-invariant, then A, must be zero, i.e., As1, Az,
As1, Az = 0.

@ Since the range of [T,5 T75] is A-invariant, then Ay, Axs, Aa1, Agz must also
be zero.
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Kalman Decomposition — structure of the B, C matrices

@ Noting that Ra(B) € Ra(R,), and

B=TB=[T,T; {gj ,

one can conclude that B; = 0, i.e., B = {%} )

e Similarly, since Null(0,) € Null(C), and

oy

CT=C [Tré Tro TF('J TFO] =

one can conclude that C,5, Gi5 must be zero, i.e.,

~

E=[0 GCo 0 G-
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Kalman Decomposition

@ Summarizing, we get

ArEJ A12 A13 A14 Brb

A 0 Aro 0 A24 D _ BrO

A= 0 0 Ars A’ B= 0

0 0 0 A 0
C=[0 GCo 0 Go], D=D.

@ From this decomposition, one can get the reachable subsystem:

Ar6 A12 Brb
(15 4 0 <o)
and the observable subsystem
Aro A24 Bro
<|:O AFO:|7|:O:|7[Cro CFo]aD)a
with their unobservable/uncontrollable parts clearly displayed.

E. Frazzoli (MIT) Lecture 21: Minimal Realizations

April 25, 2011

6/12



Remarks on the Kalman decomposition

—figure showing input-output connections—

@ The Kalman decomposition is unique up to similarity transformation with the
same block structure.

@ Eigenvalues of the various subsystems are uniquely defined.
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Realizations

@ Recall that given a discrete-time state-space model (A, B, C, D), one can
obtain an equivalent 1/0O model with transfer function
H(z) = C(zl — A)~'B+D.

@ How can we do the converse? i.e., given a transfer function, how can we get
an equivalent state-space model?

@ Note that

H(z) = C(zl — A)"'B + D = Cro(zl — Aw) By + D,

i.e., the transfer function of a system is entirely defined by its reachable and
observable part.
@ The function H(z) can also be written as

H(z)=Ho+z '*Hi +z 2 Ho + ...,

where the coefficients H; (also called the Markov parameters) describe the
response at time step / to an impulse at time 0 (and zero initial conditions).
These coefficients can be computed as

Ho = D, and H, = CAK1B, for k > 1.
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Minimal Realizations

@ In particular, one is interested in getting the smallest possible realization of a
transfer function model.

@ Theorem: A realization is minimal if and only if it is reachable and observable.
@ Proof:

o For the necessity part, it is clear that if a realization of a transfer function is
not reachable or not observable, one could extract its reachable and observable
part through the Kalman decomposition, which is smaller.

o For sufficiency, assume (A, B, C, D) is reachable and observable of order n, but
is not minimal, i.e., there is another (reachable and observable) realization
(A*, B*, C*, D*) of smaller order n*. Then,

Hi H» ... H,
O.R, = H:  Hs = O!R;
Hy ... ... Hop

but the rank of O,R, is n, while the rank of O, Ry is n* < n, which is a
contradiction.
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Minimal Realizations of SISO systems

@ A way to compute a minimal realization of a SISO system is by using
canonical forms, e.g., controller canonical form.

@ In this case, given a (proper) rational transfer function in the form

bnflsn_l + bn,QSn_2 + ...+ by

G(s) = s" 4+ a,_15" L+ a,_08""2. . 4+ ag +6(c0),
we get

0 1 0 0 0
0 0 1 0 0

A= , B =
0 0 0 1 0
—ap —a1 —a —ap_1 1

C= [b() b1 bnfl} s D= G(OO)
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Minimal Realizations of MIMO systems

@ Could do a SISO minimal realization for each entry in the matrix transfer
function.

@ However, this realization may not be minimal
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Gilbert's realization

o Consider a matrix transfer function H(z), with m inputs and p outputs.

@ Let d(s) be the least common denominator, and assume that d(z) has no
repeated roots.

@ Compute the partial fraction expansion of H, in the form
H(z) = H(c0) +>7, 2 p R;; let r; be the rank of each residue matrix R;.

e Write each residue matrix as R; = C/*" B/

@ The desired realization is:

P1
1 B

Pi B;
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