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Motivation


All analytical methods for control design are based on a “model” of the 
system to be controlled. Such a model does not necessarily represent a 
perfect description of the system, for several reasons, for example: 

The complexity of a real physical system can not be handled well by

mathematical models.

Even in the case in which a perfect model can be designed for a given system, 
in general the same model is not a perfect description under all operating 
conditions. 
The experimental identification of a system’s model (including validation of a 
mathematical model) is very difficult for open-loop unstable plants, for obvious 
reasons. Even for stable plants, an accurate experimental measurement of 
high-frequency behavior is very hard to get. 
Certain characteristics of the model may not be amenable to “easy” control 
design (e.g., nonlinearities, or very high order or fast dynamics). In these 
cases, it may be preferable to formulate a simple linear model of the system, 
that can be used as the basis for control design. 
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System uncertainty and uncertainty models


P

P̃

Uncertainty model

System uncertainty

nominal system

"real" system

Still, even though a perfect model of the system is not available, it is desired 
to design an automatic control system that performs according to some 
specifications not only for the given “model,” but also for the “real” system. 
In order to take such uncertainty into account, we will first come up with an 
uncertainty model, consisting of 

A nominal model; 
A set of models that is guaranteed to contain the system uncertainty, and is 
easier to handle. 

and then design a control system that meets the stability and performance 
specifications not only for P, but also for all other possible models in the 
uncertainty model. 
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Multiplicative uncertainty 

Multiplicative uncertainty models are of the form 

P̃(s) = (1 + W2(s)Δ(s))P(s), 

in which the frequency weight W2 is a given stable transfer function, and Δ 
is an unknown stable transfer function, such that �Δ�∞ < 1. 
Note that since 

1 P̃(s) 
W2(s) P(s) 

− 1 = Δ(s), 

and �Δ�∞ ≤ 1, it must also be true that 

P̃(jω) 
< 1 

1 
P(jω) 

− 1 
W2(jω) 

for all frequencies ω, i.e., that 

P̃(jω) 
P(jω) 

− 1 < |W2(jω)|, ∀ω ∈ R. 

So the multiplicative uncertainty model is a description of how much the 
ratio of the “real” and “nominal” transfer function is away from being equal 
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Multiplicative uncertainty


Among other things, multiplicative uncertainty is useful when the gain of P̃ is 
uncertain. For example, consider the uncertain system 

P̃(s) = γG (s), γ ∈ [γ−, γ+], 

where G (s) is a known transfer function. We can represent the same set of 
systems using a multiplicative uncertainty model with 

γ− + γ+
P(s) = γ0G (s), γ0 = ,

2 

and 
W2(s) = 

γ+ − γ− 
. 

γ+ + γ− 

E. Frazzoli (MIT) Lecture 17: Robust Stability April 6, 2011 5 / 15 



Additive uncertainty 

Additive uncertainty models are of the form


P̃(s) = P(s) + W2(s)Δ(s).


Additive uncertainty is useful when the numerator of P̃ contains uncertain 
terms, such as zero locations. 

For example, consider the case in which 

P̃(s) = (s m + . . . + βs l + . . . + 1)G (s), β ∈ [β−, β+]. 

We can represent the same set of systems with an additive uncertainty model 
of the form 

P(s) = (s m + . . . + β0s 
l + . . . + 1)G (s), β0 = 

β− + β+ 
,

2


and


W2(s) = 
β+ − β− 

s l .

β+ + β− 
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Feedback Uncertainty models 

Feedback uncertainty models are of the form


P̃(s) = 
P(s) 

.

1 + W2(s)Δ(s)P(s) 

Feedback uncertainty is useful when the denominator of P̃ contains uncertain 
terms, such as damping coefficients. 
For example, consider the case in which 

P̃(s) = 
G (s) 

, α ∈ [α−, α+]. 
sn + . . . + αs l + . . . + 1 

We can represent the same set of systems with a feedback uncertainty model 
of the form


G (s) α− + α+

P(s) = , α0 = , 

sn + . . . + α0s l + . . . + 1 2


and

W2(s) = 

α+ − α− 
s l .


α+ + α− 
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Nyquist stability criterion


Let Γ be a closed path in C, which does not go through any of the 
zeroes/poles of a function F : C C. The image of Γ under F will encircle →
the origin N = Z − P times, where Z and P are, respectively, the numbers of 
zeroes and poles of F inside the contour Γ. 

Consider F (s) = 1 + L(s). The poles of F are the poles of the loop transfer 
function L; the zeroes of F are the closed-loop poles (i.e., poles of (1 + L)−1). 

If Γ is the “D”-contour, traversed clockwise, then the F Γ contour will ◦
encircle the origin clockwise N = Z − P times. 

In other words, the closed loop will be stable if and only if P = Z − N, i.e., if 
the number of times L Γ encircles the -1 point is exactly equal to the ◦
number of open-loop unstable poles. 
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Robust stability


In the case of additive uncertainty, L = (P0 + W Δ)K = L0 + W ΔK , the 
Nyquist plot will not encircle the −1 point if |W (jω)K (jω)
i.e., if

| < |1 + L0(jω), 

W (jω)K (jω) 
< 1, ∀ω ∈ R. 

1 + L0(jω) 

Another way to look at this is by this equivalence: 

Δ(jω) 
W (jω)K (jω) ∀ω ∈ Rmin 1 + > 0,

1 + P0(jω)K (jω)|Δ(jω)|≤1 

W (jω)K (jω) 
1 + L0(jω) 

< 1, ∀ω ∈ R. 
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Proof 

2 1:→ 

Δ(jω) ≥ 1 − 
W (jω)K (jω) W (jω)K (jω)

1 + Δ(jω) ≥
1 + P0(jω)K (jω) 1 + P0(jω)K (jω) 

W (jω)K (jω) 
.1 −

1 + P0(jω)K (jω) 

1 2: Assume there exists ω0 for which the ratio is ≥ 1.→ 
Define


W (jω0)Kjω0 = ae jφ ,

1 + P0(jω0)K (jω0)


if Δ(jω0) = 1 
a e

−jφ−jπ, the system is unstable.

This can be achieved by choosing 

Δ(s) = ± 
1 s − α

, 
a s + α 

since one can always find α such that ± jω0−α = e−jφ−jπ .jω0+α 
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Linear Fractional Description   

Rewrite the block diagram in the following way, i.e., isolating Δ

[standard G − Δ block diagram]


The transfer function of the non-Δ part of the block diagram can be written 
as � � � � � � 

u Guy Guw y 
z 

= 
Gzy Gzw w 

, 

where u and y are, respectively, the input and output to Δ. 
The system is assumed to be nominally internally stable (a stabilizing 
controller may be embedded in G ), hence all blocks in G are stable. 
If the interconnection is closed as a feedback on Δ, how do the stability 
properties of the system change? 
Given y = Δu, we can solve for the closed-loop transfer function w z :→ 

Δu = y = ΔGuy y +ΔGuw w ⇒ y = (I − ΔGuy )
−1ΔGuw w 

and hence 

z = Gzy y + Gzw w = (I − ΔGuy )
−1ΔGuw + Gzw w . 

E. Frazzoli (MIT) Lecture 17: Robust Stability April 6, 2011 11 / 15 



“Unstructured” Small-Gain Theorem


Let M = Guy be the transfer function describing G “as seen by Δ.” The 
robust stability problem is hence equivalent to establishing the stability of 

(I − ΔM)−1Δ = Δ(I − MΔ)−1 , 

for any stable Δ with �Δ�H∞ < 1. 

Theorem (“Unstructured” Small-Gain Theorem) 

Let Γ = {Δ stable : �Δ�H∞ < 1. If M is stable, then (I − MΔ)−1 and 
Δ(I − MΔ)−1 are stable for all Δ ∈ Γ if and only if �M�H∞ < 1. 
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Proof — sufficiency


To prove sufficiency, it is enough to show that if �M�H∞ < 1, (I − MΔ) has 
no zeros in the closed RHP. 

For any x = 0, and s+ in the closed RHP, 

�[I − M(s+)Δ(s+)]x�2 ≥ �x�2 − �M(s+)Δ(s+)x�2 

≥ �x�2 − σmax[M(s+)Δ(s+)]�x�2 

≥ �x�2 − �M�H∞ �Δ�H∞ �x�2 > 0 
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Proof — necessity 

We want to prove that if σmax(M(jω0)) > 1 for some ω0, then one can 
construct a Δ with �Δ�H∞ < 1 that makes the closed-loop system unstable. 
Consider the singular-value decomposition M(jω0) = UΣV �, with σ1 > 1.⎤⎡ 

Then one can choose Δ(jω0) = V ⎢⎣ 

1/σ1 

0 ⎥⎦U �. 
. . . 

Clearly, ⎡ ⎤ 

I − M(jω0)Δ(jω0) = I − UΣV �V ⎢⎣ 

1/σ1 

0 ⎥⎦U � 

. . . ⎤⎡⎞⎤⎡⎛ 
1/σ1 0 ⎜⎝I − ⎢⎣ 0 ⎟⎠⎥⎦ U � = U ⎢⎣ 1 ⎥⎦= U U �, 

. . . . . . 

i.e., a singular matrix.

It remains to find a transfer function Δ such that Δ(jω0) has the desired

form.
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Performance as Stability Robustness


A performance criterion, e.g., disturbance rejection, can be stated as a bound 
on the H∞ norm of a certain transfer function. 

This is formally the same as the robust stability problem. (i.e., take the

“certain transfer function as M)
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