
6.241 Dynamic Systems and Control 
Lecture 9: Transfer Functions 

Readings: DDV, Chapters 10, 11, 12 

Emilio Frazzoli 

Aeronautics and Astronautics

Massachusetts Institute of Technology


March 2, 2011 

E. Frazzoli (MIT) Lecture 9: Transfer Functions Mar 2, 2011 1 / 13 



Asymptotic Stability (Preview)


We have seen that the unforced state response (u = 0) of a LTI system is 
easily computed using the “A” matrix in the state-space model: 

x [k] = Ak x [0], or x(t) = e At x(0). 

A system is asymptotically stable if limt +∞ x(t) = 0, for all x0. →

Assume A is diagonalizable, i.e., V −1AV = Λ, and let r = Vx be the vector 
of model coordinates. Then, 

ri [k] = λk
i ri [0], or ri (t) = e λi t ri (0), i = 1, . . . , n. 

Clearly, for the system to be asymptotically stable, |λi | < 1 (DT) or

Re(λi ) < 0 (CT) for all i = 1, . . . , n.


It turns out that this condition extends to the general (non-diagonalizable) 
case. More on this later in the course. 
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� � � 

(Time-domain) Response of LTI systems — summary 

Based on the discussion in previous lectures, the solution of initial value 
problems (i.e., the response) for LTI systems can be written in the form: 

k−1

y [k] = CAk x [0] + C Ak−i−1Bu[i ] + Du[t] 
i=0 

or � t 
y(t) = C exp(At)x(0) + C exp(A(t − τ))Bu(τ) dτ + Du(t). 

0 

However, the convolution integral (CT) and the sum in the DT equation are 
hard to interpret, and do not offer much insight. 
In order to gain a better understanding, we will study the response to 
elementary inputs of a form that is 

particularly easy to analyze: the output has the same form as the input. 
very rich and descriptive: most signals/sequences can be written as linear 
combinations of such inputs. 

Then, using the superposition principle, we will recover the response to 
general inputs, written as linear combinations of the “easy inputs.” 
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� � 

The continuous-time case: elementary inputs


Let us choose as elementary input u(t) = u0est , where s ∈ C is a complex

number.


If s is real, then u is a simple exponential.


If s = jω is imaginary, then the elementary input must always be

accompanied by the “conjugate,” i.e.,


u(t) + u∗(t) = u0e
jωt + u0e

−jωt = 2u0 cos(ωt); 

in other words, if s is imaginary, then u(t) = est must be understood as a 
“half” of a sinusoidal signal. 

if s = σ + jω, then 

u(t) + u∗(t) = u0(e σt e jωt + u0e σt e−jωt ) 

= u0(e σt e jωt + e−jωt ) = 2u0e σt cos(ωt), 

and the input u is a “half” of a sinusoid with exponentially-changing

amplitude.
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� � 

Output response to elementary inputs (1/2) 

Recall that, � t 
y(t) = CeAt x(0) + C e A(t−τ )Bu(τ ) dτ + Du(t). 

0 

Plug in u(t) = u0est : � t

y(t) = CeAt x(0) + C e A(t−τ)Bu0e sτ dτ + Du0e st


0 �� t � 

= CeAt x(0) + C e(sI −A)τ dτ e At Bu0 + Du0e st 
0 

If (sI − A) is invertible (i.e., s is not an eigenvalue of A), then 

y(t) = CeAt x(0) + C (sI − A)−1 e(sI −A)t − I e At Bu0 + Du0e st . 
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� � 

Output response to elementary inputs (2/2)


Rearranging: 

y(t) = CeAt x(0) − C (sI − A)−1 e At Bu0 + C (sI − A)−1B + D u0e st . � �� � � �� � 
Transient response Steady−state response 

If the system is asymptotically stable, eAt 0, and the transient response →
will converge to zero.


The steady state response can be written as:


yss = G (s)e st , G (s) ∈ Cny ×nu , 

where G (s) = C (sI − A)−1B + D is a complex matrix. 

The function G : s G (s) is also known as the transfer function: it → 
st stdescribes how the system transforms an input e into the output G (s)e . 
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Laplace Transform


The (one-sided) Laplace transform F : C C of a sequence f : R R is→ ≥0 →
defined as � +∞ 

F (s) = f (t)e−st dt, 
0 

for all s such that the series converges (region of convergence).


Given the above definition, and the previous discussion,


Y (s) = G (s)U(s).


U(s)e st Y (s)e st = G (s)U(s)e st
⇒ 

Also, G (s) is the Laplace transform of the “impulse” response. 
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� � � 

The discrete-time case: elementary inputs


Let us choose as elementary input u[k] = u0zk , where z ∈ C is a complex 
number. 

If z is real, then u is a simple geometric sequence. 

Recall 
k−1

y [k] = CAk x [0] + C Ak−i−1Bu[i ] + Du[k]. 
i=0 

Plug in u[k] = u0zk , and substitute l = k − i − 1: 

k−1

y [k] = CAk x [0] + C Al Bu0z 
k−l−1 + Du0z 

k 

l=0 

k−1

= CAk x [0] + Czk−1 (Az−1)i Bu0 + Du0z 
k . 

i=0 
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� 

� 

� 

Matrix geometric series


Recall the formula for the sum of a geometric series: 

k−1
i 1 − mk 

m = . 
1 − m 

i=0 

For a matrix: 
k−1

M i = I + M + M2 + . . . Mk−1 . 
i=0


k−1


M i (I − M) = (I + M + M2 + . . . Mk−1)(I − M) = I − Mk . 
i=0 

i.e., 
k−1

M i = (I − Mk )(I − M)−1 . 
i=0 
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� � � � 

Discrete Transfer Function 

Using the result in the previous slide, we get 

y [k] = CAk x [0] + Czk−1(I − Ak z−k )(I − Az−1)−1Bu0 + Du0z 
k 

= CAk x [0] + C (z k I − Ak )(zI − A)−1Bu0 + Du0z 
k . 

Rearranging: 

y [k] = CAk x [0] − (zI − A)−1Bu0 + C (zI − A)−1B + D u0z 
k . � �� � � �� � 

Transient response Steady−state response 

If the system is asymptotically stable, the transient response will converge to zero. 
The steady state response can be written as: 

yss[k] = G (z)z k , G (z) ∈ C, 

where G (z) = C (zI − A)−1B + D is a complex number. 
The function G : z G (z) is also known as the (pulse, or discrete) transfer function: it → 

k kdescribes how the system transforms an input z into the output G (z)z . 
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Z-Transform


The (one-sided) z-transform F : C → C of a sequence f : N0 → R is defined 
as 

+∞

F (z) = f [k]z−k , 
k=0 

for all z such that the series converges (region of convergence).


Given the above definition, and the previous discussion,


Y (z) = G (z)U(z).


U(z)z k Y (z)z k = G (z)U(z)z k
⇒ 

Y (z) = G (z)U(z) 

Also, G (z) is the z transform of the “impulse” response, i.e., the response to 
the sequence u = (1, 0, 0, . . .). 
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Models of continuous-time systems


CT 
CT System 

CT 

⎤⎡⎤⎡ 
1 0 . . . 0 0 

A = 
⎢⎢⎣ 
. . . . . . . . . 0 
0 . . . 1 0 

⎥⎥⎦ B = 
⎢⎢⎣ 
. . . 
0 

⎥⎥⎦ 
ẋ(t) = Ax(t) + Bu(t) 
y(t) = Cx(t) + Du(t) −a0 −a1 . . . −an−1 1 

� � 
C = b0 b1 . . . bn−1 D = d 

bn−1s
n−1 + . . . + b0

G (s) = C (sI − A)−1B + D G (s) = + d 
sn + an−1sn−1 + . . . + a0 
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Models of discrete-time systems


DT 
DT System 

DT 

⎤⎡⎤⎡ 
1 0 . . . 0 0 

A = 
⎢⎢⎣ 
. . . . . . . . . 0 
0 . . . 1 0 

⎥⎥⎦ B = 
⎢⎢⎣ 
. . . 
0 

⎥⎥⎦ 
x [k + 1] = Ax [k] + Bu[k] 

y [k] = Cx [k] + Du[k] −a0 −a1 . . . −an−1 1 

� � 
C = b0 b1 . . . bn−1 D = d 

bn−1z
n−1 + . . . + b0

G (z) = C (zI − A)−1B + D G (z) = + d 
zn + an−1zn−1 + . . . + a0 
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