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Asymptotic Stability (Preview)

@ We have seen that the unforced state response (u = 0) of a LTI system is
easily computed using the “A” matrix in the state-space model:

x[k] = Akx[0], or x(t) = e*x(0).

@ A system is asymptotically stable if lim;_, ;o x(t) = 0, for all xo.

@ Assume A is diagonalizable, i.e., V-1AV = A, and let r = Vx be the vector
of model coordinates. Then,

Alkl = Mol or ()= eNn(0), i=1....n

geeey

o Clearly, for the system to be asymptotically stable, |\;| <1 (DT) or
Re(A;)) <0 (CT) foralli=1,...,n.

@ It turns out that this condition extends to the general (non-diagonalizable)
case. More on this later in the course.
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(Time-domain) Response of LTI systems — summary

@ Based on the discussion in previous lectures, the solution of initial value
problems (i.e., the response) for LTI systems can be written in the form:

y[k] = CA*x[0] + cz_: (A== Buli]) + Dult]
y(t) = Cexp(At)x(0) + C/Ot exp(A(t — 7))Bu(r) d7 + Du(t).

@ However, the convolution integral (CT) and the sum in the DT equation are
hard to interpret, and do not offer much insight.
@ In order to gain a better understanding, we will study the response to
elementary inputs of a form that is
o particularly easy to analyze: the output has the same form as the input.
e very rich and descriptive: most signals/sequences can be written as linear
combinations of such inputs.
@ Then, using the superposition principle, we will recover the response to
general inputs, written as linear combinations of the “easy inputs.”
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The continuous-time case: elementary inputs

o Let us choose as elementary input u(t) = uge™, where s € C is a complex
number.

o If s is real, then u is a simple exponential.

o If s = jw is imaginary, then the elementary input must always be
accompanied by the “conjugate,” i.e.,

u(t) + u*(t) = uget + upe ™t = 2uqy cos(wt);

in other words, if s is imaginary, then u(t) = e must be understood as a
“half” of a sinusoidal signal.

e if s =0 + jw, then
u(t) + u*(t) = up(e”t e/t + upete )
= up(e”" (e/*t + e794")) = 2uge”" cos(wt),

and the input v is a “half” of a sinusoid with exponentially-changing
amplitude.
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Output response to elementary inputs (1/2)

@ Recall that,
t
y(t) = CeAx(0) + C / A=) Bu(r) dr + Du(t).
0

@ Plug in u(t) = upe™:

t
y(t) = Cex(0) + C / eAt=7) Buye®™ dr + Duge™
Jo
t
= Ce’x(0) + C ( / elsI=A)T dT) e**Bug + Duge®
0

o If (s/ — A) is invertible (i.e., s is not an eigenvalue of A), then

y(t) = Ce’x(0) + C(sl — A)~* [e(s"A)t - I} e Bug + Duge®".

E. Frazzoli (MIT) Lecture 9; Transfer Functions Mar 2, 2011 5/13



Output response to elementary inputs (2/2)

@ Rearranging:

y(t) = Ce™x(0)— C(sl — A)"te™*Bug + [C(s] — A)"'B + D] upe™.

Transient response Steady—state response

o If the system is asymptotically stable, e** — 0, and the transient response
will converge to zero.

@ The steady state response can be written as:
Yoo = G(s)e™,  G(s) € Cv*m,

where G(s) = C(sl — A)"1B + D is a complex matrix.

@ The function G : s — G(s) is also known as the transfer function: it
describes how the system transforms an input e into the output G(s)e™.
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Laplace Transform

@ The (one-sided) Laplace transform F : C — C of a sequence f : R>g — R is

defined as oo
F(s) :/ f(t)e * dt,
0

for all s such that the series converges (region of convergence).

@ Given the above definition, and the previous discussion,
Y(s) = G(s)U(s).

U(s)et = Y(s)e™ = G(s)U(s)e™

@ Also, G(s) is the Laplace transform of the “impulse” response.
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The discrete-time case: elementary inputs

@ Let us choose as elementary input u[k] = ugz¥, where z € C is a complex
number.
o If z is real, then v is a simple geometric sequence.
@ Recall
k—1
y[k] = CA*x[0] + C Y~ A*"""'Bu[i] + DulK].
i=0

Plug in u[k] = uoz¥, and substitute | = k — i — 1:

k—1
y[k] = CA¥x[0] + CE:A/Buozk_l_1 + Duyz"
1=0
k-1

= CAX[0] + Cz*1 (Z(Az‘l)’) Bug + Dupz*.

i=0
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Matrix geometric series

@ Recall the formula for the sum of a geometric series:

@ For a matrix:

ZM(I—

E. Frazzoli (MIT)

k—1 . l_mk
m = .
1—m
i=0
k—1 )
ZM’:I+M+M2+...Mk_1.
i=0

=(I+M+M 4. . M) —M)=1- M-

ki M= (I = M1 — M)~
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Discrete Transfer Function

@ Using the result in the previous slide, we get

y[k] = CA*x[0] + Cz*71(I — A*z=%)(I — Az=Y) " Bug + Duyz*
= CA*X[0] + C(z*I — AM)(zl — A)~Bug + Dugz*.
@ Rearranging:

y[k] = CA* (x[0] — (2l — A)*Bug) + (C(zl — A)"'B + D) upz*.

Transient response Steady —state response

o If the system is asymptotically stable, the transient response will converge to zero.
@ The steady state response can be written as:

ves[k] = G(2)Z, G(z) € C,
where G(z) = C(zl — A)™'B + D is a complex number.

@ The function G : z — G(z) is also known as the (pulse, or discrete) transfer function: it
describes how the system transforms an input z¥ into the output G(z)z*.
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Z-Transform

@ The (one-sided) z-transform F : C — C of a sequence f : Ny — R is defined
as

+oo
F(z) =) flKlz™%,
k=0

for all z such that the series converges (region of convergence).
@ Given the above definition, and the previous discussion,
Y(z) = G(2)U(2).
U(z)z" = Y(2)z=G(2)U(2)Z"
Y(2) = G(2)U(2)
@ Also, G(z) is the z transform of the “impulse” response, i.e., the response to

the sequence u = (1,0,0,...).
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Models of continuous-time systems

cr cr

— CT System ——

1 0 0 0
X(t) = Ax(t)+ Bu(t) :
y(t) = Cx(t) + Du(t) —ap —a a1
C= [bo b1 bn—l] D=d
n—1
G(s)=C(sl —A)"'B+D G(s) = by_1s :...-1—[30 d
5"+an_15n +-..+ao
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Models of discrete-time systems

DT

DT

— DT System ———
1 0 0 0
A= B—
xlk+1] = Ax[k]+ Bulk] 0o ... 1 0 2
y[k] = Cx[k] + Dulk] —ap —a —an 1
C = [bo by bn—l] D=d
n—1
G(z)=C(z2l —A)'B+D G(z) = braz" 4. by
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