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Forced response and initial-conditions response

@ Assume we want to study the output of a system starting at time tg, knowing the
initial state x(tg) = xo, and the present and future input u(t), t > t. Let us study the
following two cases instead:

o Initial-conditions response:
{ xic(to) = xo,

— )
uc(t) =0, t> t, e

o Forced response:

{ XF(to):: 0,

up(t) = u(t), t>w, = I

o Clearly, xop = xic + xr, and u = uic + up, hence

Y =yic + yr,

that is, we can always compute the output of a linear system by adding the output
corresponding to zero input and the original initial conditions, and the output
corresponding to a zero initial condition, and the original input.

@ In other words, we can study separately the effects of non-zero inputs and of non-zero
initial conditions. The “complete” case can be recovered from these two.
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Initial-conditions response (DT)

Consider the case of zero input, i.e., u = 0; in this case, the state-space equations

are written as the difference equations
x[0] = xo y[0] = C[0]xo
x[1] = A[0] x[0] y[1] = C[1] A[0] x[0]
x[2] = A[1] A[0] x[0] ~ y[2] = C[2] A[1] A[0] x[O]
Ik = ok, 01 x[0]  y[K] = ClK] o[k, 0] x[0]
where we defined the state transition matrix ®[k, ¢] as

¢[k7€]:{ ’;t[k_l]A[k—z]...A[/L k>0>0

k=1

E. Frazzoli (MIT) Lecture 8: Solutions of State-space Models Feb 28, 2011

3/19



Forced response with zero i.c. (DT)

@ We need to compute the solution of x[k + 1] = Aax[k] + Baulk], x[0] = 0.
@ By substitution, we get:
x[k] = Alk — 1]x[k — 1] + B[k — 1]ulk — 1]
= Alk — 1)(A[k — 2]x[k — 2] + B[k — 1Ju[k — 2]) + B[k — 1Ju[k — 1]

k—1
= o[k, 0] x[0] + > ®[k, i + 1]B[i]uli].

i=0
u[o]
o] |
ulk — 1]
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@ In other words, x[k] = [k, 0]U[k, 0], where

[k,0] = [®[k, 1]B[0] ®[k,2]B[] ... Blk—1]], U=

@ The output is
ylk] = C[K]I[k, OJuA[, O].



Summary (DT)

@ In general, state/output trajectories of a DT state-space model can be

computed as:
x[k] = ®[k, 0]x[0] + T'[k, 0] [k, 0],

yIk] = C[K]®[,0]x[0] + C[k]T [k, O]k, O].

@ In general ®[k, ¢] may not be invertible. In the cases in which it is, one can
also compute x[0] as a function of x[k].

E. Frazzoli (MIT) Lecture 8: Solutions of State-space Models Feb 28, 2011 5/19



Initial-conditions response (CT)

Consider the case of zero input, i.e., u = 0; in this case, the state-space
equations are written as

—x(t) = Al)x(t),  x(t) = xo;
y(t) = C(e)x(2).

Assume that the matrix function A : t — A(t) is sufficiently well behaved so

that there exists unique state/output signals x and y. (e.g., A'is
piecewise-continuous).
Define a state transition function ®(t,7) such that, for all t,7 € T,

0
a(‘b(t’ 7_) = A(t)q)(tv 7_);

o(t,t) = 1.
The function ® can in general be computed numerically, integrating a
differential equation in n unknown functions, with n initial conditions
(assuming x € R").
Then, x(t) = ®(t, to)xo, and y(t) = C(t)d(t, to)xo
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Forced response with zero i.c. (CT)

@ We need to integrate

d
Ex(t) = A(t)x(t) + B(t)u(t), x(t) =0,

y(£) = C(1)x(8) + D()u(t)

@ Again, assume the input signal u and the matrix functions A and B are such
that there exists a unique solution.

@ Claim: the forced solution is

An:/¢@ﬂmﬂmw¢

to

@ The output is

y:qn/¢@ﬂmﬂwﬂw+omwu

to
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Forced response with zero i.c. (CT) 2/2

o Verify by substitution: clearly x(ty) = 0; moreover,

%X(t) _ % /t o(t,7)B(r)u(r) dr =

/t D a(t,7)B(r)u(r) o7 +[0(,7) B,

= A(t)/t &(t, 7)B(r)u(r) dr + B(t)u(t) = A(t)x(t) + B(t)u(t).
o Similarly for the output.
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Further properties of the state transition function

o O(ty, tg) = P(tp, t1)P(t1, to).

@ Look up on the lecture notes.
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The LTI case

o In DT, if A[k] = A, B[k] = B, for all k € T, then ®[k, (] = A<=*, and
[k, = [A<'B, A2B, ..., BJ.

e in CT, if A(t) = A, and B(t) = B, for all k € T, then
d(t, 7) = exp(A(t — 7)), where

+o0
1 . 1 1
exp(M)::Zﬁ/\/l’:I+M+§M2+6M3+...
i=0

o Easy to check that the matrix exponential satisfies the conditions for the
state transition function.
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Similarity Transformations

@ The choice of a state-space model for a given system is not unique.

@ For example, let T be an invertible matrix, and set x = Tr, i.e., r = T 1x.

This is called a similarity transformation.

@ The standard state-space model can be written as

Tt = ATr+Bu
y = CTr+ Du
i.e.,
rt = (T7'AT)r +(T7'B)u= Ar+ Bu
y = (CT)r+Du= Cr+ Du
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Modal Coordinates

e Is a state trajectory of the form x[k] = A\*v (\ # 0) a valid solution of the
state-space model, assuming u = 07

o Since x[k + 1] = Ax[k], then \<t1v = AXky, e, (A — A)v = 0: the
proposed state trajectory is a valid solution if and only if v is (right)
eigenvector of A, with eigenvalue \. It will in fact be a solution of the system
with initial condition x[0] = v;.

@ Assume that A has n independent eigenvectors. Then, any initial condition
can be written uniquely as a linear combination of eigenvectors, i.e.,
x[0] = "7, a;v;. The solution of the state-space model is then

X[k] = Z Oé,'V,‘/\f-(,
i=1

which is called the modal decomposition of the unforced response.
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Modal contributions

@ Since a = V~1x(0), one can also write

n
x[k] = Z Meviw!xo,
i=1

which shows that «; = w/xo is the contribution of the initial condition to the

i-th mode.
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Diagonalization of the system

e If T =V = matrix of eigenvectors, then V~1AV = A (prove by AV = VA).

@ Decoupled system for each mode.
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