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1 State-space models 
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State of a system


We know that, if a system is causal, in order to compute its output at a given 
time t0, we need to know “only” the input signal over (−∞, t0]. (Similarly for DT 
systems.) 

This is a lot of information. Can we summarize it with something more 
manageable? 

Definition (state) 

The state x(t1) of a causal system at time t1 is the information needed, together 
with the input u between times t1 and t2, to uniquely predict the output at time 
t2, for all t2 ≥ t1. 

In other words, the state of the system at a given time summarizes the whole 
history of the past inputs −∞, for the purpose of predicting the output at future 
times. 

Usually, the state of a system is a vector in some Euclidean space Rn . 
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Dimension of a system


The choice of a state for a system is not unique (in fact, there are infinite choices, 
or realizations). 

However, there are come choices of state which are preferable to others; in 
particular, we can look at “minimal” realizations. 

Definition (Dimension of a system) 

We define the dimension of a causal system as the minimal number of variables 
sufficient to describe the system’s state (i.e., the dimension of the smallest state 
vector). 

We will deal mostly with finite-dimensional systems, i.e., systems which can be 
described with a finite number of variables. 
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Some remarks on infinite-dimensional systems


Even though we will not address infinite-dimensional systems in detail, some 
examples are very useful: 

(CT) Time-delay systems: Consider the very simple time delay ST , defined as 
a continuous-time system such that its input and outputs are related by 

y(t) = u(t − T ). 

In order to predict the output at times after t, the knowledge of the input for 
times in (t − T , t] is necessary. 

PDE-driven systems: Many systems in engineering, arising, e.g., in structural 
control and flow control applications, can only be described exactly using a 
continuum of state variables (stress, displacement, pressure, temperature, 
etc.). These are infinite-dimensional systems. 

In order to deal with infinite-dimensional systems, approximate discrete models are 
often used to reduce the dimension of the state. 
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State-space model 

Finite-dimensional linear systems can always be modeled using a set of differential (or 
difference) equations as follows: 

Definition (Continuous-time State-Space Models) 

d 
dt 

x(t) = A(t)x(t) + B(t)u(t); 

y(t) = C (t)x(t) + D(t)u(t); 

Definition (Discrete-time State-Space Models) 

x [k + 1] = A[k]x [k] + B[k]u[k]; 

y [k] = C [k]x [k] + D[k]u[k]; 

The matrices appearing in the above formulas are in general functions of time, 
and have the correct dimensions to make the equations meaningful. 

E. Frazzoli (MIT) Lecture 7: State-space Models Feb 25, 2011 6 / 11 



LTI State-space model 

If the system is Linear Time-Invariant (LTI), the equations simplify to: 

Definition (Continuous-time State-Space Models) 

d 
dt 

x(t) = Ax(t) + Bu(t); 

y(t) = Cx(t) + Du(t); 

Definition (Discrete-time State-Space Models) 

x [k + 1] = Ax [k] + Bu[k]; 

y [k] = Cx [k] + Du[k]; 

In the above formulas, A ∈ Rn×n , B ∈ Rn×1 , C ∈ R1×n , D ∈ R, and n is the dimension of the 
state vector. 
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Example of DT system: accumulator


Consider a system such that 
k−1

y [k] = u[i ]. 
i=−∞ 

Notice that we can rewrite the above as 

k−2

y [k] = u[i ] + u[k − 1] = y [k − 1] + u[k − 1]. 
i =−∞ 

In other words, we can set x [k] = y [k] as a state, and get the following state-space model: 

x [k + 1] = x [k] + u[k], 

y [k] = x [k]. 

Let x [0] = y [0] = 0, and u[k] = 1; we can solve by repeated substitution: 

x [1] = x [0] + u[0] = 0 + 1 = 1, y [1] = x [1] = 1; 

x [2] = x [1] + u[1] = 1 + 1 = 2, y [2] = x [2] = 2; 

. . . 

x [k] = x [k − 1] + u[k − 1] = k − 1 + 1 = k, y [k] = x [k] = k; 
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Finite-dimensional Linear Systems 1/2


Recall the definition of a linear system. Essentially, a system is linear if the 
linear combination of two inputs generates an output that is the linear 
combination of the outputs generated by the two individual inputs. 

The definition of a state allows us to summarize the past inputs into the 
state, i.e., � 

u(t), −∞ ≤ t ≤ +∞ ⇔ 
x(t0), 
u(t), t ≥ t0, 

(similar formulas hold for the DT case.) 

We can extend the definition of linear systems as well to this new notion. 
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Finite-dimensional Linear Systems 2/2


Definition (Linear system (again)) 

A system is said a Linear System if, for any u1, u2, t0, x0,1, x0,2, and any two real 
numbers α, β, the following are satisfied: � 

x(t0) = x0,1, 
u(t) = u1(t), t ≥ t0, 

→ y1, 

� 
x(t0) = x0,2, 
u(t) = u2(t), t ≥ t0, 

→ y2, 

� 
x(t0) = αx0,1 + βx0,2, 
u(t) = αu1(t) + βu2(t), t ≥ t0, 

→ αy1 + βy2. 

Similar formulas hold for the discrete-time case. 
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Forced response and initial-conditions response 

Assume we want to study the output of a system starting at time t0, knowing the initial 
state x(t0) = x0, and the present and future input u(t), t ≥ t0. Let us study the following 
two cases instead: 

Initial-conditions response: 

xIC(t0) = x0,

uIC(t) = 0, t ≥ t0, 

→ yIC;


Forced response: �

xF(t0) = 0,

uF(t) = u(t), t ≥ t0, 

→ yF.


Clearly, x0 = xIC + xF, and u = uIC + uF, hence 

y = yIC + yF, 

that is, we can always compute the output of a linear system by adding the output 
corresponding to zero input and the original initial conditions, and the output corresponding 
to a zero initial condition, and the original input. 
In other words, we can study separately the effects of non-zero inputs and of non-zero initial 
conditions. The “complete” case can be recovered from these two. 
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