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State of a system

We know that, if a system is causal, in order to compute its output at a given
time tp, we need to know “only” the input signal over (—oo, to]. (Similarly for DT
systems.)

This is a lot of information. Can we summarize it with something more
manageable?

Definition (state)

The state x(t;) of a causal system at time t; is the information needed, together
with the input u between times t; and t,, to uniquely predict the output at time
tr, for all tr > t.

In other words, the state of the system at a given time summarizes the whole

history of the past inputs —oo, for the purpose of predicting the output at future
times.

Usually, the state of a system is a vector in some Euclidean space R".
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Dimension of a system

The choice of a state for a system is not unique (in fact, there are infinite choices,
or realizations).

However, there are come choices of state which are preferable to others; in
particular, we can look at “minimal” realizations.

Definition (Dimension of a system)

We define the dimension of a causal system as the minimal number of variables
sufficient to describe the system’s state (i.e., the dimension of the smallest state
vector).

We will deal mostly with finite-dimensional systems, i.e., systems which can be
described with a finite number of variables.
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Some remarks on infinite-dimensional systems

Even though we will not address infinite-dimensional systems in detail, some
examples are very useful:
o (CT) Time-delay systems: Consider the very simple time delay S, defined as
a continuous-time system such that its input and outputs are related by

y(t)=u(t—T).

In order to predict the output at times after t, the knowledge of the input for
times in (t — T, t] is necessary.

o PDE-driven systems: Many systems in engineering, arising, e.g., in structural
control and flow control applications, can only be described exactly using a
continuum of state variables (stress, displacement, pressure, temperature,
etc.). These are infinite-dimensional systems.

In order to deal with infinite-dimensional systems, approximate discrete models are
often used to reduce the dimension of the state.
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State-space model

Finite-dimensional linear systems can always be modeled using a set of differential (or
difference) equations as follows:

Definition (Continuous-time State-Space Models)

X8 = Alt)x(t) + B(t)u(t);
y(t) = C(&)x(t) + D(t)u(t);

Definition (Discrete-time State-Space Models)

x[k +1]
y[K]

A[K]x[k] + B[k]ulk];
C[k]x[Kk] + D[k]ulk];

The matrices appearing in the above formulas are in general functions of time,
and have the correct dimensions to make the equations meaningful.
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LTI State-space model

If the system is Linear Time-Invariant (LTI), the equations simplify to:

Definition (Continuous-time State-Space Models)

Ax(t) + Bu(t);
Cx(t) + Du(t);

d
ax(t)
y(t)

Definition (Discrete-time State-Space Models)

x[k+1]
y[k]

Ax[k] + Bulk];
Cx[k] + Dulk];

y

In the above formulas, A € R™" B e R"™ ! C e R'*" D € R, and n is the dimension of the
state vector.
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Example of DT system: accumulator

o Consider a system such that
k—1

vk = 3 lil

i=—o0

@ Notice that we can rewrite the above as

k—2
y[k] = (Z u[i]> + ulk —1] = y[k — 1] + u[k — 1].

@ In other words, we can set x[k] = y[k] as a state, and get the following state-space model:

xlk+1] = x[k]+ ulk],
VK = Ak

o Let x[0] = y[0] =0, and u[k] = 1; we can solve by repeated substitution:

x[1] = x[0]+ul0]=0+1=1, y[l]=x[1]=1,
x[2] = x[1]+u[l]=1+1=2, y[2]=x[2] =2
x[k] = ;’[;(71]+u[k71]:k71+1:k, ylk] = x[k] = k;
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Finite-dimensional Linear Systems 1/2

@ Recall the definition of a linear system. Essentially, a system is linear if the
linear combination of two inputs generates an output that is the linear
combination of the outputs generated by the two individual inputs.

@ The definition of a state allows us to summarize the past inputs into the
state, i.e.,

— < t<
u(t),—oo <t < 400 = { u(t), t>to,

(similar formulas hold for the DT case.)

@ We can extend the definition of linear systems as well to this new notion.
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Finite-dimensional Linear Systems 2/2

Definition (Linear system (again))

A system is said a Linear System if, for any w1, us, tg, x0,1, X0,2, and any two real

numbers «, 3, the following are satisfied:

{ x(to) = Xo,1,

u(t) = ui(t), t>to,

{ x(to) = xo,2,

u(t) = w(t), >,

x(to) = axo1 + Bx0,2,
u(t) = aui(t) + Bua(t), t > to,

Similar formulas hold for the discrete-time case.

- n,
- Y2,
— ay1 + Bys.
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Forced response and initial-conditions response

@ Assume we want to study the output of a system starting at time ty, knowing the initial
state x(tp) = xo, and the present and future input u(t), t > to. Let us study the following
two cases instead:

e Initial-conditions response:

{ xic(to) = xo,

uic(t) =0, t>to, yies
e Forced response:

XF(tu) = 07 e

ur(t) = u(t), t>to, :

o Clearly, xo = xic + xr, and v = uic + up, hence

Y = yic + yr,

that is, we can always compute the output of a linear system by adding the output
corresponding to zero input and the original initial conditions, and the output corresponding
to a zero initial condition, and the original input.

@ In other words, we can study separately the effects of non-zero inputs and of non-zero initial
conditions. The “complete” case can be recovered from these two.
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