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Introduction

@ Important issues in engineering, and in systems and control science in
particular, concern the sensitivity of computations, solution algorithms,
design methods, to uncertainty in the input parameters.

@ For example: What is the smallest perturbation (e.g., in terms of 2-norm)
that makes a matrix singular? What is the impact on the solution of a
least-square problem of uncertainty in the data? etc.
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Additive Perturbation

Theorem (Additive Perturbation)

Let A€ C™*" be a matrix with full column rank (= n). Then

min {||All2: A+ A has rank < n} = omin(A).
Ae((:m)(n

Proof:

o If A4+ A has rank < n, then there exists x, with ||x|2 = 1, such that
(A4+A)x =0, ie, Ax = —Ax.

@ In terms of norms, ||All2 > ||Ax]l2 = ||Ax]]2 > omin(A)
@ To prove that the bound is tight, let us construct a A that achieves it.

o Choose A = —GminUminViin- Clearly, ||A]] = omin.

° (A + A)Vmin = (27:1 UiUiV,',) Vmin — Uminuminvllnin Vmin =

OminUmin — OminUmin = 0

E. Frazzoli (MIT) Feb 16, 2011 4 /10



Multiplicative Perturbation

Theorem (Small Gain)

Let Ae Cmxn:

1

min {||All2 : (/ — AA) is singular } = L
’ Tmax

AeCrx

i.e., (I = AA) is non-singular if ||All2|| A2 < 1.

Proof:
o If I — AA is singular, then there exists x # 0, such that (/ — AA)x = 0.

o Hence, [lx]ls = [AAx]> < ALl Axl> = omax(A) Az,
e that is, Ay > HHAX)‘]L‘Z > 7Umi(A).

@ To show that the bound is tight, choose A =
IAll2 = 1/0max(A), and pick x = uUpax.

@ Then, (I — AA)X = Umax — mAVmax = Umax — Umax = 0.

1 !
(A Vmax Uinax- Clearly

Omax(
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Perturbations measured in the Frobenius norm

o A useful inequality: ||Al|r > ||A|l2, for any A € C™*".
IAf = Trace(A'A) = 377, 07 > ofa = A5

1 max
o Note: a rank-one matrix A; = uv’ # 0 only has only one non-zero singular
value. Hence, its Frobenius norm is equal to its induced 2-norm.

@ Since the matrices A used in the proofs of the perturbation bounds were
both rank-one, the results extends to the Frobenius norm case:

Theorem (Additive Perturbation)

min {HA”F A+ A has rank < n} = O'min(A).
AeCmxn

A\

Theorem (Small Gain)

1
A, (1Al : (1 = AL) is singular } = —— .,
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Total Least Squares

@ In the least squares estimation problem, we considered an inconsistent system
of equations y = Ax (where A has more rows than columns).

@ In order to compute a solution, we introduced a notion of “measurement
error” e = y — Ax, and looked for a solution that is compatible with the
smallest measurement error.

@ A more general model (total least squares) also considers a notion of
“modeling error,” i.e., looks for a solution x of

y=(A+A)x+e,

that minimizes ||Allr + |[ell2 = [|[A, €]]|F.
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Total Least Squares Solution
@ Rewrite the problem in block matrix form:

min
lAlle+llell2

e For this problem to have a valid solution, A+ A must be singular (%X #0).

@ This is an additive perturbation problem, in the Frobenius norm... we know
the smallest perturbation is A = —0pin(A) Umin Vi -

@ The total least squares solution is obtained by X = vy, rescaled so that the
last entry is equal to 1, i.e., [x' 1] = av);,.
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Conditioning of Matrix Inversion

. . .| 100 100 , a1 |5 5
@ Consider the matrix A = [100.2 100]. Its inverse is A™" = [5'01 5}

. . 100 100 . .
o Consider the perturbed matrix A+ JA = {100.1 100} Its inverse is
-10 10
-1 _
(A+0A)™ = {10.01 —10}

@ A 0.1% change in one of the entries of A results in a 100% change in the
entries of A=l Similarly for the solution of linear systems of the form
Ax=y.

@ Under what conditions does this happen? i.e., under what conditions is the

inverse of a matrix extremely sensitive to small perturbations in the elements
of the matrix?
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Condition number

Differentiate A~*A = /. We get d(A"}) A+ A1 dA =0.
@ Rearranging, and taking the norm:

Id(A™)] = | = A™H dA ATH| < AT [|dA]|

That is,

||O(“ 1)” A~ 1 A Ha“H

The quantity K(A) = ||[A7L|||A||, called the condition number of the matrix
A gives a bound on the relative change on A~! given by a perturbation on A.

o If we are considering the induced 2-norm,

K(A) = [AT Al = Oimax(A)/Tmin(A)-
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