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Outline


1 Matrix Perturbations 
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Introduction


Important issues in engineering, and in systems and control science in 
particular, concern the sensitivity of computations, solution algorithms, 
design methods, to uncertainty in the input parameters. 

For example: What is the smallest perturbation (e.g., in terms of 2-norm) 
that makes a matrix singular? What is the impact on the solution of a 
least-square problem of uncertainty in the data? etc. 
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Additive Perturbation


Theorem (Additive Perturbation) 

Let A ∈ Cm×n be a matrix with full column rank (= n). Then 

min 
Δ∈Cm×n

{�Δ�2 : A + Δ has rank < n} = σmin(A). 

Proof: 

If A + Δ has rank < n, then there exists x , with �x�2 = 1, such that 
(A + Δ)x = 0, i.e., Δx = −Ax . 

In terms of norms, �Δ�2 ≥ �Δx�2 = �Ax�2 ≥ σmin(A) 

To prove that the bound is tight, let us construct a Δ that achieves it. 

Choose Δ = −σminuminv
� Clearly, �Δ� = σmin.min. 

(A + Δ)vmin = n σi ui vi
� vmin − σminuminv

� = minvmin 

σminumin − σminumin = 0. 
i=1 
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Multiplicative Perturbation


Theorem (Small Gain) 

Let A ∈ Cm×n: 

min 
Δ∈Cn×n 

{�Δ�2 : (I − AΔ) is singular } = 
1 

σmax(A) 
, 

i.e., (I − AΔ) is non-singular if �A�2�Δ�2 < 1. 

Proof: 

If I − AΔ is singular, then there exists x = 0, such that (� I − AΔ)x = 0. 

Hence, �x�2 = �AΔx�2 ≤ �A�2�Δx�2 = σmax(A)�Δx�2, 
1that is, Δ2 ≥ ��

Δ
x
x
�
�
2

2 ≥ σmax(A) 
. 

To show that the bound is tight, choose Δ = 1 vmaxu
� . Clearly σmax(A) max

�Δ�2 = 1/σmax(A), and pick x = umax.


Then, (I − AΔ)x = umax − 1 Avmax = umax − umax = 0.
σmax(A) 
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Perturbations measured in the Frobenius norm 

A useful inequality: �A�F ≥ �A�2, for any A ∈ Cm×n . 
2 = Trace(A�A) = n 

σ2 ≥ σ2 2
2.�A�F i=1 i max = �A�

Note: a rank-one matrix A1 = uv � = 0 only has only one non-zero singular 
value. Hence, its Frobenius norm is equal to its induced 2-norm. 

Since the matrices Δ used in the proofs of the perturbation bounds were 
both rank-one, the results extends to the Frobenius norm case: 

Theorem (Additive Perturbation) 

min 
Δ∈Cm×n

{�Δ�F : A + Δ has rank < n} = σmin(A). 

Theorem (Small Gain) 

min 
Δ∈Cn×n 

{�Δ�F : (I − AΔ) is singular } = 
1 

σmax(A) 
, 
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Total Least Squares


In the least squares estimation problem, we considered an inconsistent system 
of equations y = Ax (where A has more rows than columns). 

In order to compute a solution, we introduced a notion of “measurement 
error” e = y − Ax , and looked for a solution that is compatible with the 
smallest measurement error. 

A more general model (total least squares) also considers a notion of

“modeling error,” i.e., looks for a solution x of


y = (A + Δ)x + e, 

that minimizes �Δ�F + �e�2 = �[Δ, e]�F. 
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Total Least Squares Solution 

Rewrite the problem in block matrix form: 

�� � � �� x 
min A −y + Δ e 

1 
= 0, 

�Δ�F+�e�2 

i.e., 

min Â+ Δ̂ x̂ = 0, 
�Δ̂�F 

A + ˆ

This is an additive perturbation problem, in the Frobenius norm... we know 
the smallest perturbation is ˆ min. 

For this problem to have a valid solution, ˆ Δ must be singular (x̂ = 0). �

Δ = −σmin(Â)uminv
�

The total least squares solution is obtained by x̂ = vmin, rescaled so that the 
last entry is equal to 1, i.e., x � 1 = αv �

min. 
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Conditioning of Matrix Inversion


Consider the matrix A = 
100 100 

. Its inverse is A−1 = 
−5 5

. 
100.2 100 5.01 −5 

100 100 
Consider the perturbed matrix A + δA = . Its inverse is 

100.1 100 

(A + δA)−1 = 
−10 10

. 
10.01 −10 

A 0.1% change in one of the entries of A results in a 100% change in the 
entries of A−1! Similarly for the solution of linear systems of the form 
Ax = y . 

Under what conditions does this happen? i.e., under what conditions is the 
inverse of a matrix extremely sensitive to small perturbations in the elements 
of the matrix? 
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Condition number 

Differentiate A−1A = I . We get d(A−1) A + A−1 dA = 0.


Rearranging, and taking the norm:


�d(A−1)� = � − A−1 dA A−1� ≤ �A−1�2 �dA� 

That is, 
�d(A−1)� ≤ �A−1� �A� �dA� 
�A−1� �A� 

The quantity K (A) = �A−1��A�, called the condition number of the matrix 
A gives a bound on the relative change on A−1 given by a perturbation on A. 

If we are considering the induced 2-norm, 

K (A) = �A−1��A� = σmax(A)/σmin(A). 
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