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Course Objectives


The course addresses dynamic systems, i.e., systems that evolve with time. 
Typically these systems have inputs and outputs: it is of interest to 
understand how the input affects the output (or, vice-versa, what inputs 
should be given to generate a desired output). 

In particular, we will concentrate on systems that can be modeled by 
Ordinary Differential Equations (ODEs), and that satisfy certain linearity 
and time-invariance conditions. In general, we will consider systems with 
multiple inputs and multiple outputs (MIMO). 

We will analyze the response of these systems to inputs and initial conditions: 
for example, stability and performance issues will be addressed. It is of 
particular interest to analyze systems obtained as interconnections (e.g., 
feedback) of two or more other systems. 

We will learn how to design (control) systems that ensure desirable 
properties (e.g., stability, performance) of the interconnection with a given 
dynamic system. 
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Course Outline 

The course will be structured in several major sections: 

A review of linear algebra, and of least squares problems. 

Representation, structure, and behavior of multi-input, multi-output (MIMO) 
linear time-invariant (LTI) systems. 

Robust Stability and Performance. Approaches to optimal and robust control 
design. 

Hopefully, the material learned in this course will form a valuable foundation for 
further work in systems, control, estimation, identification, signal processing, and 
communications. 
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Assignments


Homework	 Generally handed out every Wednesday, and due in class a week 
later (except as noted on schedule), at which time solutions will be 
handed out. 

Tests There will be two exams: 

Midterm Exam, March 16, TBC (take home?) 

Final Exam (during final exam week) 

Grading	 The course grade will depend on: (a) your involvement in the 
subject (30%), as evidenced mainly by your homework, but also by 
your interaction with the TAs and instructor; (b) your performance 
on the the midterm exam (30%), and the final exam (40%). 

E. Frazzoli (MIT) Lecture 1: Introduction	 Feb 2, 2011 6 / 22 



Notes and Texts


There is no required text. Lecture notes are required and available in  the

Readings section of the OCW site. 
  

   

Other texts that you may wish to examine at some point are 

D.G. Luenberger, Introduction to Dynamic Systems, Wiley, 1979. 

T. Kailath, Linear Systems, Prentice-Hall, 1980. 

J.C. Doyle, B.A. Francis, and A.R. Tannenbaum, Feedback Control Theory, 
Macmillan, 1992. (Available on the   site.)  

R.J. Vaccaro, Digital Control: A State-Space Approach, McGraw-Hill, 1995. 
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Tentative schedule


# Date Topic Chapter 
1 Feb 2, 2011 Introduction to dynamic systems and control. Ch 1 

Matrix algebra. 
2 Feb 7, 2011 Least Squares error solutions of overdeter- Ch 2, 3 

mined/underdetermined systems 
3 Feb 9, 2011 Matrix Norms, SVD, Matrix perturbations Ch 4 
4 Feb 14, 2011 Matrix Perturbations Ch 5 
5 Feb 16, 2011 State-space models, Linearity and time invari- Ch 6,7,8 

ance 
6 Feb 22, 2011 Solutions of State-space models 10, 11 
7 Feb 23, 2011 Similarity transformations, modes of LTI sys­ 12 

tems, Laplace transform, Transfer functions 
8 Feb 28, 2011 Stability, Lyapunov methods 13, 14 
9 Mar 2, 2011 External I/O stability, Storage functions 15 

10 Mar 7, 2011 Interconnected Systems, Feedbck, I/O Stability 15, 17 
11 Mar 9, 2011 System Norms 16 
12 Mar 14, 2011 Performance Measures in Feedback Control 18 
13 Mar 16, 2011 Small Gain Theorem, stability robustness 19 
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Tentative schedule


# Date Topic Chapter 
14 
15 
16 

17 
18 

19 

20 

21 
22 
23 
24 
25 
26 

Mar 28, 2011 
Mar 30, 2011 
Apr 4, 2011 

Apr 6, 2011 
Apr 11, 2011 

Apr 13, 2011 

Apr 20, 2011 

Apr 25, 2011 
Apr 27, 2011 
May 2, 2011 
May 4, 2011 
May 9, 2011 

May 11, 2011 

Stability Robustness (MIMO) 
Reachability 
Reachability - standard and canonical forms, 
modal tests 
Observability 
Minimality, Realization, Kalman Decomposi­
tion, Model reduction 
State feedback, observers, output feedback, 
MIMO poles and zeros 
Minimality of interconnections, pole/zero can­
cellations 
Parameterization of all stabilizing controllers 
Optimal control synthesis: problem setup 
H2 optimization 
H∞ optimization 
TBD 
TBD 

20, 21 
22 
23 

24 
25 

26-29 

30 
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Vector Spaces 

A vector space is defined as a set V over a (scalar) field F , together with two 
binary operations, i.e., vector addition (+) and scalar multiplication ( ), satisfying ·
the following axioms: 

Commutativity of +: u + v = v + u, ∀u, v , ∈ V ;


Associativity of +: u + (v + w) = (u + v) + w , ∀u, v , w ∈ V ;


Identity element for +: ∃0 ∈ V : v + 0 = 0 + v = v , ∀v ∈ V ;


Inverse element for +: ∀v ∈ V ∃(−v) ∈ V : v + (−v ) = (−v) + v = 0;


Associativity of : a(bv) = (ab)v , ∀a, b ∈ F , v ∈ V ;
·


Distributivity of w.r.t. vector +: a(v + w) = av + aw , ∀a ∈ F , v , w ∈ V ;
·


Distributivity of w.r.t. scalar +: (a + b)v = av + bv , ∀a, b ∈ F , v ∈ V ;
·


Normalization: 1v = v , ∀v ∈ V .
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Vector space examples (or not?)


Rn , Cn;


Real continuous functions f : R R
→ 

The set of m × n matrices;


The set of solutions y(t) of the LTI ODE dy(t)/dt + 3y(t) = 0;


The set of points (x1, x2, x3) ∈ R3 satisfying x1
2 + x2

2 + x2 = 1.
3 

The set of solutions y(t) of the LTI ODE dy(t)/dt + 3y(t) = 0. 
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Subspaces


A subspace of a vector space is a subset of vectors that itself forms a vector 
space. 

A necessary and sufficient condition for a subset of vectors to form a 
subspace is that this subset be closed with respect to vector addition and 
scalar multiplication. 

E. Frazzoli (MIT) Lecture 1: Introduction Feb 2, 2011 13 / 22 



Subspace examples (or not?)


The range on any real n × m matrix, and the nullspace of any m × n matrix. 

The set of all linear combinations of a given set of vectors. 

The intersection of two subspaces. 

The union of two subspaces. 

The Minkowski (or direct) sum of two subspaces. 
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Linear (in)dependence, bases 

n vectors v1, v2, . . . , vn ∈ V are (linearly) independent if


c1v1 + c2v2 + . . . + cnvn = 0 c1, c2, . . . , cn = 0.
⇔ 

A space is n-dimensional if every set of more than n vectors is dependent, but 
there is some set of n vectors that are independent. 

Any set of n independent vectors is also called a basis for the space. 

if a space contains a set of n independent vectors for any n ∈ N, then the 
space is infinite-dimensional. 
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Norms


Norms measure the ‘length” of a vector. A norm maps all vectors in a vector 
space to a non-negative scalar, with the following properties: 

Positivity: �x� > 0 for x = 0. �

Homogeneity: �ax� = |a| �x�, ∀a ∈ R, x ∈ V . 

Triangle inequality: �x + y� ≤ �x� + �y�. 

E. Frazzoli (MIT) Lecture 1: Introduction Feb 2, 2011 16 / 22 



1

2

3

4

�

Norm examples (or not?) 

Usual Euclidean norm in Rn , �x� = 
√
x �x ;


(where x � is the conjugate transpose of x, i.e., as in Matlab).


A matrix Q is Hermitian if Q � = Q, and positive definite if x �Qx > 0 for 
x = 0. Then � �x� = 

√
x �Qx is a norm. 

For x ∈ Rn , �x�1 = 1 
n |xi |, and �x�∞ = maxi |xi |. 

For a continuous function f : [0, 1] →�R� 
: 
1 

�1/2 
�f �∞ = supt∈[0,1] |f (t)|, and �f �2 = |f (t)|2dt .

0 
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Inner product


An inner product on a vector space V (with scalar field F ) is a binary

operation �·, ·� : V × V F , with the following properties:
→ 

Symmetry: �x , y� = �y , x��, ∀x , y ∈ V ;


Linearity: �x , ay + bz� = a�x , y � + b�x , z�;


Positivity: �x , x� > 0 for x = 0. �


The inner product gives a geometric structure to the space; e.g., it allows to 
reason about angles, and in particular, it defines orthogonality. Two vectors x 
and y are orthogonal if �x , y� = 0. 

Let S ⊆ V be a subspace of V . The set of vectors orthogonal to all vectors 
in S is called S⊥, the orthogonal complement of S , and is itself a subspace. 
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Inner product and norms


An inner product induces a norm �x� = �x , x�. 

For example, define �x , y� = x �Qy with Q Hermitian positive definite. � 1
For f , g continuous functions on [0, 1], let �f , g� = f (t)g(t) dt

0 

Cauchy-Schwartz inequality: |�x , y�| ≤ �x� �y�, ∀x , y ∈ V ,

with equality only if y = αx for some α ∈ F .

(assuming that the norm is that induced by the inner product)


Proof 
0 ≤ �x + αy , x + αy� = x �x + α�y �x + αx �y + |α|2 y �y 

Choose α = −x �y/�y , y� : 

.0 ≤ �x , x��y , y� − �x , y�2 
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The Projection Theorem


Let M be a subspace of an inner product space V . Given some y ∈ V , 
consider the following minimization problem: 

min 
m∈M 

�y − m�, 

where the norm is that induced by the inner product in V . 

Projection theorem 

The optimal solution m̂ is such that 
(y − m̂) ⊥ M 

y1 

y2 

M 

V y 

m̂ 
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Proof of the projection theorem


By contradiction: assume that y − m̂ is not orthogonal to M, i.e., there is 
some m0, �m0� = 1, such that �y − m̂, m0� = δ = 0. �

Then argue that ( ̂m + δ�m0) ∈ M achieves a better solution than m̂. In fact: 

�y − m̂− δ�m0�2 = �y − m̂�2 − δ��y − m̂, m0� − δ�m0, y − m̂� + |δ|2�m0�2 

= �y − m̂�2 − |δ|2 − |δ|2 + |δ|2�m0�2 = �y − m̂�2 − |δ|2 . 
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Linear Systems of equations 

Consider the following system of (real or complex) linear equations: 

Ax = y , A ∈ Rm×n , x ∈ Rn , y ∈ Rm . 

Given A and y , is there a solution x? 

∃ a solution x ⇔ y ∈ A ⇔ R([A|y ]) = R(A). 

There are three cases: 
n = m: if det(A) = 0) � ⇒ x = A−1y is the unique solution.

m > n: more equations than unknowns, the system is overconstrained. Happens in,

e.g., estimation problems, where one tries to estimate a small number of parameters

from a lot of experimental measurements. In such cases the problem is typically

inconsistent, i.e., y /
∈ R(A). So one is interested in finding the solution that 
minimizes some error criterion. 
m < n: more unknown than equations, the system is overconstrained. Happens in, 
e.g., control problems, where there may be more than one way to complete a desired 
task. If there is a solution xp (i.e., Axp = y), then typically there are many other 
solutions of the form x = xp + xh, where xh ∈ N (A) (i.e., Axh = 0). In this case it is 
desired to find the solution than minimizes some cost criterion. 
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