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HOMEWORK 10 SOLUTIONS

Exercise 23.1 a) We are given the single input LTI system:

. 01 0
x—Ax+bu,A—[O 0} ,b—[l]

The solution is expressed by:
¢
z(t) = eAta:(O) —l—/ eA(tff)bu(T)dT
0

Calculate exponent of matrix A by summing up the series and taking into account that A" =
0, Vn>1.
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The reachability matrix has rank 2, therefore the system is reachable. Now, we compute the
reachability Grammian over an interval of length 1:

1

2

1

The system is reachable thus the Grammian is invertible, so given any final state x5 we can always
find o such that xy = Ga. In particular

thus

b) the reachability matrix is:

1
G= / ATl AT g — [
0

D[ =0 =

L L
V2| 10
¢) According to 23.5 define FT () = eA0=% b. Then u(t) = F(t)a is a control input that produces
a trajectory that satisfies the terminal constraint xy. The control effort is given as:

T
/ wdr =o' G a
0
Infact this input corresponds to the minimum energy input required to reach x ¢ in 1 second. This

can be verified by solving the corresponding underconstrained least squares problem by means of
the tools we learned at chapter 3.



d) First of all note that
O/Goz:x/f G 1 Ty

The Grammian as well as its inverse are symmetric matrices. If we want to maximize the energy,
max{(x’f)G_lx 7l llz¢]l = 1}, we have to choose z ¢ alligned with the singular vector corresponding to
Omin(G).

Exercise 23.4 Given :

z(t) = Az + (b + d)u,

where 6 € R", and (A4, b) is reachable.

a) Using the Theorem 22.2, in order to make the system unreachable, we have w’ B = for some
left eigenvectors w’ of A. So, let \; is an eigenvalue of A and w; be the corresponding left
eigenvectors. Then, using the theorem, we want to find § which makes this eigenmode unreachable
< w! (b+6) = 0. So, now we have

Ts_ T
w; 6 = —w; b.

Then with this constraint, we would like to minimize ||d||2. Thus this can be cast into an optimiza-
tion problem as follows:

Find min||d]|2

s.t. wl§ = —w!b.

i

This is exactly in the form of the least square problem. Since both ¢ and b are real, even when

w; € C*, let w; = [ wZR wi] ], where wZ-R and wiI are real and imaginary parts of w; respectively.

Then the formulation still remains as a least square problem as follows:

Find s
st.  wle=wlb.
Then the solution to this problem is
6 = —wi(w w)'wl'b

cmin|oll, = \V§'s

The last expression has to be minimized over all possible left eigenvectors of A. Note that the ex-
pression does not depend on the norm of the eigenvectors, thus we can minimize over eigenvectors
with unity norm. If all Jordan blocks of matrix A have different eigenvalues, this is a minimization
over a finite set. In the other case we can represent eigenvectors corresponding to Jordan blocks
with the same eigenvalues as a linear combination of eigenvectors corresponding to particular Jor-
dan blocks, and then minimize over the coefficients in the linear combination.



b) NO. The explanation is as follows. With the control suggested, the closed loop dynamics is now
t = Az + (b+d)u
v = ffa+w
=i = (A+(b+0) Dz + b+ ).
Suppose that w; was the minimizing eigenvector of unity norm in part a). Then it is also an

eigenvector of matrix A + (b + &) f7 since w; is orthogonal to b + &. Therefore feedback does not
improve reachability.

Exercise 24.5 a) The given system in general for all £ > 0 with u(k) = 0 Vk > 0 has the following
expression for the output:

y(t) = %20 ,CA™F 1 Bu(k)
= CA'S_ > A *'Bu(k)

since matrix A is stable. Note that because of stability of matrix A all of its eigenvalues are strictly
within unit circle, and from Jordan decomposition we can see that

14|z =0

lim

k—o0
therefore x(—o0) does not influence z(0). Thus the above equation can be used in order to find
x(0) as follows:

z(0) = i‘j A" Bu(k).

k=-1

b) Since the system is reachable, any ¢ € R™ can be achieved by some choice of an input of the
above form. Also, since the system is reachable, the reachability matrix R has full row rank. As
a consequence (RRT)~! exists. Thus, in order to minimize the input energy, we have to solve the
following familiar least square problem:

Find min ||u|2

st. &= _Z A1 Bu(k).

k=-1

Then the solution can be written in terms of the reachability matrix as follows:

Umin = RT(RRT)ilga

so that its square can be expressed as

= ((RRT)"HTRRT(RRT) "¢
¢NRRT) I,



where the last equality comes from the fact that inverse of a symmetric positive definite matrix is
still symmetric positive definite. Also, the Controlability Gramian of DT systems P is

oo
P =) A*BBT(AT)F =RRT,
k=0

and is symmetric positive definite. Thus the square of the minimum energy, denoted as «; (&), can
be expressed as

a1(§) =Pl = | ME|3

where M is a Hermitian square root matrix of P~! which is still symmetric positive definite.
¢) Suppose some input Uy, results in 2(0) = £, then the output for ¢ > 0 can be expressed as

y(t) = Cx(t) = CA%.

Thus the square of the energy of the output for t > 0 can be written as

lyl3 = 'y

C C
— C’Ag C’Ag

T

t=0
= ¢ro’og

Since the Observability Grammian of DT systems Q is

Q=Y (ANkcTcAr = 0T 0,
k=0

the square of the energy of the output for ¢t > 0 , which we now denote as(&), can be expressed as
a function of ¢ as follows:

az(§) = €T Q8.

Also, because of the symmetric positive definiteness of Q, as(£) can be written as

aa(€) = [INE]l:,

where N is a Hermitian square root matrix of Q.

d) It can be argued as follows:



-1

a = mgx{i y()? | > u(t)? <1, u(k) = 0vk >0}
t=0

t=—o0
— mgx{aQ(g) | Fusts=xz(0)and Y u(t)* <1, u(k)=0, Vk >0}

= m?x{az(ﬁ) | Nminl3 < 1}

= mgx{oa(i) | a1(§) < 1}.

e) Now, using the fact shown in d) and noting the fact that P~* = MT M where M is Hermitian
square root matrix which is invertible, we can compute a:

a = max{ay() [ e1(€) <1}
= mgx{llNﬂI% | [IME]3 <1} set &€ =M1
= max{(Mflz)TOTOMflz | |73 < 1}
= Umaac( )
Amaz (M~ HTOTOM™)
Amaz(M~H)TQM ™)
)\mar(Q ( 1)T)
Amaz(Q P)

max

Exercise 25.2 a) Given:

s+ f s+ f Ha(s) = 1
(s+4P #1122 +485+64 > s—2

Thus the state-space realizations in controller canonical form for H;(s) and Hs(s) are :

Hl(s) =

—12 —48 —64 1
A = 1 0 0 ,Bi=[0],C=(01 f), D=0,
0 1 0 0

and

Ay=2,By=1,Co=1, Dy=0.

Since f is not included in the controllability matrix for H;(s) with this realization, the controllabil-
ity, which is equivalent to reachability for CT cases, the controllability is independent of the value
of f.Thus, check the rank of the controllability matrix:



1
rank(C) = rank| 0 1 —12
0

= 3

Thus, the system with this realization is controllable. On the other hand, the observability matrix
O for Hi(s) contains f in it as follows:

0 1 f
0= 1 f 0
—12+ f —48 —-60
Thus, when f =4, O decreases its rank from 3 to 2.

Now, let’s consider the state-space realization in observer canonical form for Hi(s). It can be
expressed as follows:

0 0 —64 f
A= 1 0 —-48 | ,Bi=| 1 ,Ci=(0 0 1), D=0
01 —12 0

Since €' does not contain f, the observability in independent of the value f. Thus check the rank
of the observability matrix:

0 0 1
rank(O) = rank| 0 1 —12
1 —-12 96

= 3.

Thus thus the system with this realization is observable.
On the other hand, the controllability matrix contains f in it as follows:

f 0 —64
c=|1 f -48
01 f—12

Thus, again when f =4, C decreases its rank from 3 to 2.

b) Let H(s) be the cascaded system, Hs(s)Hi(s). Then, the augmented system H(s) has the
following state-space representation:



—12 —48 —-64 O 1

. 1 0 0 0 0

zr = x + U
0 1 0 0 0
o 1 f 2 0

v = (o 0 0 1)&

r = Az + Bu

%
y = Cux.

Here, we use Aj, Bi, and C from the controller canonical form obtained in a). Since matrix A has
zero block in its upper triangle, the eigenvalues of the cascaded system are ones of A; and Ag, i.e.,
—4,—4,—4, and 2. Thus the cascaded system is not asymptotically stable. Since C is not included
in the eigenvalue computation for A, the stability does not depend on the value of f.

The controllability matrix C for H(s) is

C = (B AB A2B A%B)

1 —12 122 -48 —1234+48%12%2—64

_ 0 1 —12 122 — 48

- 0 0 1 —12 ’
0 0 1 12+ f+2

which decreases its rank from 4 to 3 when f = —2. On the other hand, the observability matrix O
for H(s) is

C
CA
0 = CA?
CA3
0 0 0 1
. 0 1 f 2
- 1 f+2 2f 4 |’
12+ f+2 —48+2f+4 —64+4f 8

thus the choice of f = 4, O drops its rank from full rank to 3. Thus the cascaded system is
unoberservable at f = 4.

It can be seen immediately that f = 2 case corresponds to unstable pole-zero cancellation. Thus,
for f = 2, the cascaded system is BIBO stable, but is not asymptotically stable due to the unstable
pole-zero cancellation.
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