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Homework 10 Solutions 

Exercise 23.1 a) We are given the single input LTI system: �    
0 1 0 

ẋ = Ax + bu , A =	 , b = 
0 0 

� �
1 

�
The solution is expressed by: 

 t 
x(t) = At  e x(0) + 

�
eA (t−τ )bu(τ)dτ 

0 

 Calculate exponent of matrix A by summing up the series and taking into account that An = 
0 , ∀n > 1.   

 t 
eAt  1

= I + At = 

�
0 1 

�
thus 

t 
e 

�  
At b = 

1 

�
b) the reachability matrix is:  

 
�
0 1 

b Ab = 
1 0 

�
The reachability matrix has rank 2, 

�
therefore

�
 the system is reachable. Now, we compute the 

reachability Grammian over an interval of length 1: � 	  1 1 1 
G = eA (T −τ )bb�eA (T −τ )�dτ = 3

0

�
2

1 
	 12 

�
The system is reachable thus the Grammian is invertible, so given any final state xf we can always 
find α such that xf = Gα. In particular 

  
1 
�

18 
α = √

2 −10 

�
c) According  to 23.5 define F T (t) = eA(1−t) b. Then u(t) = F (t)α is a control input that produces 
a trajectory that satisfies the terminal constraint xf . The control effort is given as: � T 

u2  dτ = α� G α 
0 

Infact this input corresponds to the minimum energy input required to reach xf in 1 second. This 
can be verified by solving the corresponding underconstrained least squares problem by means of 
the tools we learned at chapter 3. 
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d) First of all note that 
α� G α  = x�f G

−1 xf 

The Grammian as well as its inverse are symmetric matrices. If we want to maximize the energy, 
max{x� G−1

f xf | �xf � = 1}, we have to choose xf alligned with the singular vector corresponding to 
σmin(G). 

Exercise 23.4 Given : 

ẋ(t) = Ax + (b + δ)u, 

where δ ∈ Rn, and (A, b) is reachable. 
  a) Using the Theorem 22.2, in order to make the system unreachable, we have wTB = for some 

 eigenvectors  left wT of A. So, let λi is an eigenvalue of A and wi be the corresponding left 
eigenvectors. Then, using the theorem, we want to find δ which makes this eigenmode unreachable 
↔ wT 

i (b + δ) = 0. So, now we have 
wT δ T 
i  = −wi b. 

Then with this constraint, we would like to minimize �δ�2. Thus this can be cast into an optimiza­
tion problem as follows: 

Find min δ
 

� 2 

s.t. wT

�
δ = −wT 

i i b. 

This is exactly in the form of the least square problem. Since both δ and b are real, even when   
    wi ∈ Cn, let w̃i = 

�
wR wI

i , where wR
i and wI

 i i are real and imaginary parts of wi respectively. 
Then the formulation still remains

�
 as a least square problem as follows: 

Find �δ�2 

s.t.  w̃T
i δ = w̃T 

i b. 

Then the solution to this problem is 

δ̂ = −�w̃i(w̃
T 
i w̃i)

−1 w̃T 
i b  

∴ min �δ�2 = ˆT ̂
δ δ

The last expression has to be minimized over all possible left eigenvectors of A. Note that the ex­
pression does not depend on the norm of the eigenvectors, thus we can minimize over eigenvectors 
with unity norm. If all Jordan blocks of matrix A have different eigenvalues, this is a minimization 
over a finite set. In the other case we can represent eigenvectors corresponding to Jordan blocks 
with the same eigenvalues as a linear combination of eigenvectors corresponding to particular Jor­
dan blocks, and then minimize over the coefficients in the linear combination. 
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b) NO. The explanation is as follows. With the control suggested, the closed loop dynamics is now 

ẋ = Ax + (b + δ)u 
T u = f x + v 

→ ẋ = (A + (b + δ)fT )x + (b + δ)v. 

Suppose that wi was the minimizing eigenvector of unity norm in part a). Then it is also an 
eigenvector of  matrix A + (b + δ)fT since wi is orthogonal to b + δ. Therefore feedback does not 
improve reachability. 

Exercise 24.5 a) The given system in general for all t ≥ 0 with u(k) = 0 ∀k ≥ 0 has the following 
expression for the output: 

y(t) = Σ CAt k 1Bu(k)−∞
k=

− −
−1

= CAtΣ−∞ A−k−1Bu(k)k=−1

since matrix A is stable. Note that because of stability of matrix A all of its eigenvalues are strictly 
within unit circle, and from Jordan decomposition we can see that 

lim Ak
2 = 0 

k→∞ 
� �

therefore x(−∞) does not influence x(0). Thus the above equation can be used in order to find 
x(0) as follows: 

�−∞ 
x(0) = A−k−1Bu(k). 

k=−1 

 b) Since the system is reachable, any ξ ∈ Rn can be achieved by some choice of an input of the 
above form. Also, since the system is reachable, the reachability matrix R has full row rank. As 
a consequence (RRT )−1 exists. Thus, in order to minimize the input energy, we have to solve the 
following familiar least square problem: 

Find min �u�2 
−∞ 

s.t. ξ = 
�

A−k−1Bu(k). 
k=−1 

Then the solution can be written in terms of the reachability matrix as follows: 

umin = RT (RRT )−1ξ, 

so that its square can be expressed as 

� 2 u� = uTmin minumin

 T RRT −1 T RRT RRT = ξ ((( ) ) ( )−1ξ 

= ξT (RRT )−1ξ, 
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where the last equality comes from the fact that inverse of a symmetric positive definite matrix is 
still symmetric positive definite. Also, the Controlability Gramian of DT systems P is 

�∞  
P  BBT = Ak (AT )k = 

k=0 

RRT , 

and is symmetric positive definite. Thus the square of the minimum energy, denoted as α1(ξ), can 
be expressed as 

   α1(ξ) = ξTP−1ξ = �Mξ�22 

 where M is a Hermitian square root matrix of P−1 which is still symmetric positive definite. 

c) Suppose some input umin results in x(0) = ξ, then the output for t ≥ 0 can be expressed as 

y(t) = Cx(t) = CAtξ. 

Thus the square of the energy of the output for t ≥ 0 can be written as 

�  y�22 = (yT⎡y) ⎡ ⎤




=


⎛ ⎤ ⎞T 

⎝⎜⎢⎣
 C C

ξ
 ⎢ A

 CA
 ⎥

⎟


 
 C
⎥


ξ

. . . . . . 

  
 

��∞  

⎦
k

⎣
  

⎦
= ξT

⎠
(AT ) CTCAk ξ 

t=0 

�
= ξTOTOξ 

Since the Observability Grammian of DT systems Q is 

�∞  
Q T k T k  = (A ) C CA = OTO, 

k=0 

the square of the energy of the output for t ≥ 0 , which we now denote α2(ξ), can be expressed as 
a function of ξ as follows: 

α2(ξ) ≡ ξT Qξ. 

Also, because of the symmetric positive definiteness of Q, α2(ξ) can be written as 

α2(ξ) = �Nξ�22, 

where N is a Hermitian square root matrix of Q. 

d) It can be argued as follows: 
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∞  −1

α = max{ 
�

(t)2 | 
�

u(t)2 y ≤ 1 , u(k) = 0 k  0
u 

t=0 t=−∞ 

∀ ≥ }

�−1  
= max{α (ξ) | ∃ u s.t.ξ = x(0) and u(t)2 

2 ≤ 1 , u(k) = 0 , ∀k  
ξ

≥ 0
	

t=

}
−∞ 

= max{α2(ξ) |
 min
ξ

�u 2 
2 ≤ 1

 
� }

= max{α2(ξ) | α1(ξ) ≤ 1}.

ξ	

e) Now, using the fact shown in d) and noting the fact that P−1 = MT M where M is Hermitian 
square root matrix which is invertible, we can compute α: 

α = max
ξ 

{α2(ξ) | α1(ξ) ≤ 1}

{�   = max Nξ�2 | �Mξ�22 set ξ = M−1
2  ≤ 1} l 

ξ 

= max )T
l 

{(M−1l OT OM−1l | �l�2 
2 ≤ 1} 

= σmax(OM−1) 

= λmax((M
−1  )T 

1 T 

OTOM−1) 

= λmax((M
− ) QM−1) 

= λmax(QM−1(M−1)T ) 

∴ α =	 λmax(Q P) 

Exercise 25.2 a) Given: 

s + f s + f	 1 
H1(s) = =	 , H2(s) = . 

(s + 4)3 s3 + 12s2 + 48s + 64 s − 2 

Thus the state-space realizations in controller canonical form for H1(s) and H2(s) are : 

	  
−12 −48 −64 1   

A1 = 

⎛
0  

 

⎞ ⎛⎝	 1 0
0

⎞⎠ , B1 = 
0 1

⎝ 0 ⎠ , C1 = 0 1 f 
0 

� �
, D1 = 0, 

and 

A2 = 2 , B2 = 1 , C2 = 1 , D2 = 0. 

Since f is not included in the controllability matrix for H1(s) with this realization, the controllabil­
ity, which is equivalent to reachability for CT cases, the controllability is independent of the value 
of f .Thus, check the rank of the controllability matrix: 
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� � 

⎛	 ⎞ 
1 −12 96 

rank(C) = rank ⎝ 0 1 −12 ⎠ 

0 0 1 
= 3. 

Thus, the system with this realization is controllable. On the other hand, the observability matrix 
O for H1(s) contains f in it as follows: ⎛	 ⎞ 

0 1 f 
O = ⎝ 1 f 0 ⎠ . 

−12 + f −48 −60 

Thus, when f = 4, O decreases its rank from 3 to 2.

Now, let’s consider the state-space realization in observer canonical form for H1(s). It can be

expressed as follows:
⎛ ⎞ ⎛ ⎞ 

0 0 −64 f 
A1 = ⎝	 1 0 −48 ⎠ , B1 = ⎝ 1 ⎠ , C1 = 0 0 1 , D1 = 0. 

0 1 −12 0 

Since C1 does not contain f , the observability in independent of the value f . Thus check the rank 
of the observability matrix: 

⎛	 ⎞ 
0 0 1 

rank(O) = rank ⎝ 0 1 −12 ⎠ 

1 −12 96 
= 3. 

Thus thus the system with this realization is observable.

On the other hand, the controllability matrix contains f in it as follows:
⎛	 ⎞ 

f 0 −64 
C = ⎝ 1 f −48 ⎠ . 

0 1 f − 12 

Thus, again when f = 4, C decreases its rank from 3 to 2. 

b) Let H(s) be the cascaded system, H2(s)H1(s). Then, the augmented system H(s) has the 
following state-space representation: 
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⎧�  � � 
    ⎪⎪ ẋ⎨⎪⎪ 1 A1 0 
=

�
x1 B1 

 

� �
+ u 

ẋ2 B C  A� 2 1 2  x 0

 � 
 2 ⎪⎪  

� �
� �⎪⎪ x⎩  

y  
1

 = 0 C2 ⎧⎪

ẋ =


⎛ x2 
 
−12 −48 

⎞
1⎪⎨⎪⎪⎪⎪⎪ ⎜ −64 0
 


0
⎜⎜⎜ 1 0 0 0
⎟⎟⎟⎟x +


⎛ ⎞

 0  0 
 


⎟
u
⎪ ⎝ 1 0⎪ 0 1
 f 2
 


⎟⎟

y = 0 0 0 1 x


⎜⎜⎜⎝
⎜

⎠ 
 0
 


⎪ 0


⎟⎠⎪⎪⎪⎩⎪�

ẋ = Ax

�
 + Bu 

�
→ 

y = Cx. 

Here, we use A1, B1, and C1 from the controller canonical form obtained in a). Since matrix A has 
zero block in its upper triangle, the eigenvalues of the cascaded system are ones of A1 and A2, i.e., 
−4, −4, −4, and 2. Thus the cascaded system is not asymptotically stable. Since C1 is not included 
in the eigenvalue computation for A, the stability does not depend on the value of f . 
The controllability matrix C for H(s) is 

  
C =

�⎛B AB A2B A3B

 


2 1 −12 12 − 48 −

�
123 + 48 ∗ 12 ∗ 2 − 64 

0 1 



−12 122 − 48 
=


⎜⎝⎜ ,

0 0
 1 

⎞
−12 

0

⎟



0  1 −12 + f + 2 

⎟

which decreases its rank from 4 to 3 when f = −2. On the other hand, the

⎠
 observability matrix O

for H(s) is 

⎛

C




⎞


⎜⎜ CA
O = ⎝ CA2
 


C 3
A

⎟⎟
0

⎠
⎛ 

 0 0 1
⎜⎜ 0 1 f 2

=
 ⎝
 ,


1 f + 2 2f 4 

⎞



−12 + f + 2 −48 + 2f + 4 −64 + 4f 8 

⎟⎟
thus the choice of f = 4, 

⎠
O drops its rank from full rank to 3. Thus the cascaded system is


unoberservable at f = 4.

It can be seen immediately that f = 2 case corresponds to unstable pole-zero cancellation. Thus,

for f = 2, the cascaded system is BIBO stable, but is not asymptotically stable due to the unstable

pole-zero cancellation.
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