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MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Department of Electrical Engineering and Computer Science


6.241: Dynamic Systems—Spring 2011 

Homework 9 Solutions 

Exercise 21.1 We can use additive perturbation model with matrices W and Δ given in Figure 21.1.


W21 0 0 Δ1 P11 0 K1 0 
W = , Δ = , P0 = , K = 

0 W12 Δ2 0 0 P22 0 K2 

Calculating transfer function from the output of Δ block w to its input z we get 

0 W21K1Δ1 

M = 1+K11P11 
W12K2Δ2 01+K22P22 

By assumption in the problem statement the decoupled system is stable, therefore the perturbed 
system will be stable if I − MΔ does not have zeros in the closed RHP for any Δ such that 
�Δ1�∞ ≤ 1 and �Δ2�∞ ≤ 1. By continuity argument this will be true if I − MΔ does not have 
zeros on jω axis, or equivalently |det (I − M(jω)Δ(jω))| > 0. Let us calculate the determinant in 
question: 

W21K1Δ11 1+K11P11 
W12W21K1K2Δ1Δ2 

W12K2Δ2
det (I − MΔ) = det 

1 
= 1 − 

(1 + K11P11) (1 + K22P22)1+K22P22 

To have a stable perturbed system for arbitrary �Δ1�∞ ≤ 1 and �Δ2�∞ ≤ 1 it is necessary and 
sufficient to impose

W12W21K1K2 

(1 + K11P11) (1 + K22P22) 
< 1


Since uncertainty blocks enter as a product, the answer will not change if only one block is per­
turbed. 

Figure 21.1 
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Exercise 21.2 
According to the lecture notes, we can state the problem equivalently as: 

1 
µ(M) =	 � 

inf�δ∈Rn {maxi |δi| : i δici = 1} 

where ci = ai ̄bi and M = �a�b�. � This problem is substantially more difficult because the determination of inf�δ∈Rn {maxi |δi| : 
δici = 1} is equivalent to: 

δ
inf 
∈Rn

{max δi| : Γ�δ =
1 

� i 
|

0 
} 

where:	 � � 
R(�c)�

Γ = I(�c)�


From this point on, we proceed for n = 3. The generelization to higher n is immediate.


Notice that the equality Γ�δ = 
1 

defines a line, say L0 ⊂ R3, in R3 . This makes our problem 
0 

equivalent to finding the smallest β such that the cube Bβ = {�δ ∈ Rn : maxi |δi| ≤ β} touches the 
line L0. That can be done by looking at the following projections: 

For every j such that I(cj ) = 0, do the following: Look for the smallest � βj such that maxi |δi| = 
βj and 

δi(R(ci) − αj I(ci)) = 1 
i 

where αj = R(cj ) . For each such j, the example done in the lecture notes shows that the minimum I(cj ) 

βj is � 
i |R(ci)

1 
−αj I(ci)| and the optimal �δ is δi = βjsgn(R(ci) − αj I(ci)). By doing that, we found 

the smallest βj such that the projection of Bβj 
in δj = 0 touches the projection of L0. Among all 

i=j∗ I(ci)δi
of the above candidate solutions, the only admissible is j∗ such that δj∗ = 

− � satisfies cj∗ 

|δj∗ | ≤ βj∗ . 
The final solution is: 

1 � 
µ(M) = = |R(ci) − αj∗ I(ci)|

βj∗ 
i 

Exercise 21.3 The perturbed system can be represented by the diagram in Figure 21.3. The closed 
loop transfer function from reference input to output is 

N(s)
H(s) = 

D(s) + K(s)N(s) 

The system is stable if the denominator does not have zeros in the closed RHP. 

D + KN = D0 + KN0 + Dδ
� δ + KNδ

�δ = (D0 + KN0) 1 + 
Dδ

� δ + KNδ
�δ 

D0 + KN0 

From the statement of the problem we know that K is a stabilizing controller, which means that 
D0 + KN0 does not have zeros in the closed RHP. Therefore it is sufficient to show that the second 
parenthesis in the product above does not have zeros in the right half plane. By continuity argument 
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Figure 21.3 

we can see that the minimum norm δ at which stability is lost puts at least one root on jω axis. 
Therefore we can rewrite the problem in the following way: 

inf min 
ω D� δ+KN � δ 

�δ
δ δ (jω)= 1 

�2 

D +KN0 0 
−

We can expand the constraint expression, taking into account that the real part has to be equal to 
−1 and imaginary part ot zero. 

inf min 2
ω A�δ=  

�δ
b

�  

where ⎡ �  
Dδ

�+KNδ
�

Re (jω)  
A� = ⎣ � D0+KN0 

� ⎤� ⎦ 1
, b = D�+KN �

−
 Im δ δ 0(jω)D0+KN0 

� �
The above represents underdetermined least squares problem. For all ω such that rank A(ω) is 2, 
the solution is 

δ(ω) = A�(A�A)−1b 

The 2-norm of this expression can be minimized over ω, and compared to the solutions (if any) 
with rank(A(ω)) < 2. 

3




�

�
 �� �
 ��� �


Exercise 22.3 a) The modal test is the most convenient in this case. The system is reachable if 
and only if rank [λI − A|B] = 5 ∀λ (need to check for λ equal to the eigenvalues of A). Observe 
that when λ = 2, [λI − A|B] is ⎤⎡ ⎢⎢⎢⎢⎣


0 −1 b1 

0 b2 

0 b3 

−1 −1 b4 

−1 b5 

⎥⎥⎥⎥⎦

,


which has rank 5 if and only if b2 and b3 are linearly independent. Similarly, λ = 3, [λI − A|B] is ⎤⎡ ⎢⎢⎢⎢⎣


1 1 b1 

1 b2 

1 b3 

0 1 b4 

0 b5 

⎥⎥⎥⎥⎦

,


which has rank 5 if and only if b5 = 0. 

(b) Suppose that A ∈ Rn×n has k Jordan blocks of dimensions (number or rows) r1, r2, . . . , rk. 
Then we must have that br1 , br1+r2 , . . . br1+r2+r3+···+rk =� 0. Furthermore, if blocks ri and rj have 
the same eigenvalue, br1+r2+r3+ +ri and br1+r2+r3+ +rj must be linearly independent. These con­··· ···
ditions imply that the input can excite the beginning of each Jordan chain, and hence has an impact 
on each of the states. 

(c) If the bi�s are scalars, then they are linearly dependent (multiples of each other), so if two of 
the Jordan blocks have the same eigenvalues the rank of [λI − A|B] is less than n. 

Alternatively, 
a) The system is reachable if none of the left eigenvectors of matrix A are orthogonal to B. 

Notice that to control the states corresponding to a Jordan block, it is sufficient to excite only 
the state corresponding the beginning of the Jordan chain, or the last element in the Jordan block 
(convince yourself of this considering a DT system for example). Thus it is not necessary that 
generalized eigenvectors are not orthogonal to the B matrix! Besides, notice that if two or more 
Jordan blocks have the same eigenvalue than any linear combination of eigenvectors corresponding 
to those Jordan blocks is a left eigenvector again. In case (a) we can identify left eigenvectors of 
matrix A: 

w2 = 0 1 0 0 0 

w5 = 0 0 0 0 1 
� 

Any linear combination of w2 and w3 is also a left eigenvector. We can see that wk
� B = b�k - k

th row 
of matrix B. Therefore for reachability of matrix A we need to have at least one non-zero element 
in 5th row and linear independence of 2rd and 3rd rows of matrix B. 
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b) Generalizing to an arbitrary matrix in Jordan form we can see that all rows of matrix B corre­
sponding to a Jordan block with unique eigenvalue should have at least one non-zero element, and 
rows corresponding to Jordan blocks with repeated eigenvalues should be linearly independent. 

c) If there are two or more Jordan blocks then we can find a linear combination of the eigenvectors 
which is orthogonal to the vector b, since two real numbers are obviously linearly dependent. 

Exercise 22.4 The open loop system is reachable and has a closed-loop expression as follows: 

xk+1 = Axk + B(wk + f(xk)), 

where f(·) is an arbitrary but known function. Since the open loop system is reachable, there 
exists  the control input u∗ such that 

u∗ = 
�
u∗

 
(0) · · · u∗  

T
(n − 1) .

          Rn that can drive the system to a target state in , xf = x∗(

�
n). Thus let’s define a trajectory 

x∗(k) such that it starts from the origin and gets to x∗(n) by the control input u∗. Then, since 
u(k) = w(k) + f(x(k)), let w(k) = u∗(k) − f(x∗(K)). Then this w(k) can always take the system 
state from the origin to any specified target state in no more than n steps. 
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