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Exercise 17.4 1) First, in order for the closed loop system to be stable, the transfer function 
from ( w w )T 

1 2 to ( y u )T has to be stable. The transfer function from w1 to y is given by 
(I − PK)−1P and is called system response function. The transfer function from w1 to u is given 
by (I − KP )−1 and is called input sensitivity function. The transfer function from w2 to y is 
(I − PK)−1PK and is called the complementary sensitivity function. The transfer function from 
w to u is given by (I − KP )−1
2 K. Therefore, we have the following : �

 
� 	   

y (I + PK)−1P (I + PK)−1PK w1 =  u

� ��
.

 (I + KP )−1 (I + KP )−1  
K w2 

�
So, if K is given as 

K =  Q(I − PQ)−1 = (I − QP )−1Q, 

then 

(I + PK)−1P	 = (I + PQ(I − PQ)−1)−1P 

= (((I − PQ) + PQ)(I − PQ)−1)−1P 

= (I − PQ)P 

(I + PK)−1PK	 = (I −  PQ)PQ(I − PQ)−1

= P (I − QP )(I − QP )−1Q 

= PQ 

(I + KP )−1	 = (I + (I − QP )−1QP )−1 

= ((I − QP + QP )(I − QP )−1)−1 

= I − QP 

(I + KP )−1K	 = (I − QP )(I − QP )−1Q 

= Q. 

Thus, the closed loop transfer function can be now written as follows: � � �	 ��  
y (I 

=
− PQ)P PQ w1 

�
. 

u (I − QP ) Q w2 

In order for the closed loop system to be stable, then all the transfer functions in the large matrix 
above must be stable as well. 

�(I − PQ)P � ≤ �I − PQ��P � ≤ (�I� + �PQ�)�P � 

≤ (�I� + �P ��Q�)�P � ≤ �P � + �P �2�Q� 

�PQ� ≤ �P ��Q� 

�I − QP � ≤ �I� + �QP � ≤ �I� + �Q��P �. 
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Since P and Q are stable from the assumptions, we know that all the transfer functions are stable. 
Therefore the closed loop system is stable if K = Q(I − PQ)−1 = (I − QP )−1Q. 

2) From 1), we can express Q in terms of P and K in the following manner. 

K = Q(I − PQ)−1 

K(I − PQ) = Q 

K − KPQ = Q 

K = (I + KP )Q 

→ Q = (I + KP    )−1K = K(I + PK)−1,

by push through rule. 

For some stable Q, the closed loop is stable for a stable P . by the stabilizing controller K = 
1 Q(I − PQ)− . Yet, not all stable Q can be used for this formulation because of the well-posedness 

of the closed loop. In the state space descriptions of P and Q, in order for the interconnected 
system, in this case K(s) to be well-posed, we have to have the condition ( 17.4 ) in the lecture 
note, i.e., (I − DP Q(∞)) is invertible. 

3) Suppose P is SISO, w1 is a step, and w2 = 0. Then, we have the following closed loop transfer 
function: � 

Y (s)
� �  

(I − PQ)P 
=

�
1 
,


U(s) I − QP s


since the Laplace  transform of the unit step is 1 we have s 

1 
U(s) = (1 − Q(s)P (s)) . 

s 

Then using the final value theorem, in order to have the steady state value of u(∞) to be zero, we 
need: 

1 
u(∞) = lim s(1 

s→0 
− Q(s)P (s)) = 0 

s 
→ 1 − Q(0)P (0) = 0 

→ Q(0) = 1/P (0). 

Therefore, Q(0) must be nonzero and is equal to 1/P (0). Note that this condition implies that P 
cannot have a zero at s = 0 because then Q would have a pole at s = 0, which contradicts that Q 
is stable. 

Exercise 17.5 a) Let l(s) be the signal at the output of Q(s), then we have 

l = Q(r − (P − P0)l) 

→ (I + Q(P − P0))l = Qr 

∴ l = (I + Q(P − P0))
−1Qr. 
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           2   Since we can write y = Pl, and with P (s) = , P0(s) = 1 , and Q = 2, the transfer function s−1 s−1 
from r to y can be calculated as follows: 

Y (s) = P (s)L(s) 

= P (I + Q(P − � 0))
−1� P QR(s) 

  
2   1 −12

= 1 + 2  2R(s) 
s − 1  

��
� s

−
 

− 1 s 

4 s 1 

− 1 

+ 1 
�−

= R(s) 
s − 1 s − 1 

4 s  1 
= 

−
R(s) 

s − 1 s + 1 
Y (s) 4 

∴ = . 
R(s) s + 1 

b) There is an unstable pole/zero cancellation so that the system is not internally stable. 
c) Suppose P (s) = P0(s) = H(s) for some H(s). Then using a part of the equation in a), we have 

Y (s) = H(s)(I + Q(s)(H(s) − H(s)))−1Q(s)R(s) 

= H(S)I−1Q(s)R(s) 

= H(s)Q(s)R(s) 
Y (s) → = H(s)Q(s). 
R(s)

Therefore in order for the system to be internally stable for any Q(s), H(s) has to be stable. 

Exercise 19.2 The characteristic polynom for the closed loop system is given by 

s(s + 2)(s + a) + 1 = 0 

Computing the locus of the closed poles as a function of a can be done numerically. The closed 
loop system is stable if a ≥ 0.225. The above bound can also be derived by means of root locus 
techniques or by evaluating the Routh Hurwitz criterion. Another way of deriving bounds for 
the value of a is by casting this parametric uncertainty problem as an additive or multiplicative 
perturbation problem, see also 19.5. One can expect that the derived bounds in such a case would 
be rather conservative. 

Exercise 19.4 We can represent an uncertainty in feedback configuration, as shown below. 
Note that the plant is SISO, and we consider blocks Δ and W to be SISO systems as well, so 

we can commute them. The transfer function seen by the Δ block can be derived as follows: 

z = P0(−Ww − Kz) 

= −(I + P0K)−1P0Ww 

∴ M = −(I + P0K)−1P0W. 

Apply the small gain theorem, and obtain the condition for stability robustness of the closed loop 
system as follows: 
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Figure 19.4 

��� W (jω)P

 0(jω) 

sup 
<
ω 

�  
 1

1 + P0(jω)K(jω) 

��
Exercise 19.5 a) Given 

��
1 

P (s) = , K(s) = 10. 
s − a 

In order for the system to remain stable, the zeros of 1 + PK be in open left half plane. Thus, 

10 s − s + 10 
1 + PK = 1 + =  a < 10. 

s − a s − a 
→

b) Assume that the nominal plant is P   
0 =

1 . With W = s −a, 

P 1 
0 s 1

Ω : = = ,
1 + W ΔP  

0 1 − aΔ1 s − aΔ
s 

so when Δ = 1, we have 

P0 1 
= = P, 

1 + W ΔP0 s − a 

which says that P is clearly in Ω. 

c) The transfer function seen by the Δ block was derived is (from the previous problem): 

M = −(I + P 1
0K)− P0W. 

Applying the small gain theorem: 
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�M�  = sup (1 + P −1P0K∞ 0K)  < 1 
ω 

| |

P0W → sup | | < 1
ω 1 + P0K 

−a


→ sup | jω | < 1

ω 1  10 + jω 

. . .  
|a| < ω2 + 100 

∴ |a| < 

�
10. 

Since Δ block can have arbitrary phase we obtained much more conservative constraint on param­
eter a than the one in a). 

d) Now, the nominal plant is replaced by P 1
0 = . With the same description of Ω set, first in s+100 

  order to show that P ∈ Ω with P 1
0 = , we need to find a new W as follows: s+100 

1

P0 s+100 1


= = , 
1 + W ΔP0 1 + W Δ 1 s + 100 + W Δ

s+100 

with Δ = 1, the denominator becomes s + 100 + W , which we want to equate to s − a. Thus we 
have a new W to be 

W = −a − 100. 

Then in order to derive the condition on the closed loop system to be stable n the set Ω, we use 
the small gain theorem again. 

�M�  = sup |(1 + P0K)−1P0K| < 1 ∞
ω 

P0W → sup
ω 

|
1 + P0K 

| < 1 

−a−100 

→ sup jω+100  | < 1
 10 �ω 1 + jω+100 

|
 

|a + 100| < ω2 + 1102 

. . . 

→ −210 < a < 10. 

We can see that by representing uncertainty in a different way we can get a less conservative result. 
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