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Homework 6 Solutions 

Exercise 13.1 (a) The system described by 

ẋ = z 

ż = −4x 3 + 2αx 

has an equilibrium point at (0, 0) for any value of α (In particular, for α in the interval −1 ≤ α ≤ 1). 
Additionally, when α > 0 there are two more equilibrium points: 

�
0, ±�

α 
� 

(In particular, this is 2 
the case for α in the interval 0 < α ≤ 1). 

(b) Linearizing the system around (0, 0) we get the Jacobian: 
� 

0 1 
�

A = 
2α 0 

The characteristic polynomial of the system is det(A − λI) = λ2 − 2α. If α > 0 there is an unstable 
root, hence the linearized model is unstable around (0, 0). If α < 0 both roots are on imaginary 
axis, and the linearized system is marginally stable (neither asymtotically stable nor unstable). To 
analyze stability of the original non-linear system in this case we would have to look at the higher 
order terms. 

For the two other equilibrium points (which exist for α > 0) we get the Jacobian: 
� 

0 1 
� 

−4α 0 

The characteristic polynomial for the system is det(A − λI) = λ2 + 4α. The complex conjugate 
roots lie on the jω axis and the linearized system is marginally stable. 

Exercise 13.2 a) Notice that the input-output differential equation can be written as 

ÿ = (u̇ − a1ẏ) + (u − a2y − cy 2) 

and we can use “observability-like” realization employed for a discrete-time system of exercise 7.1 
(c). The differential equations for the states are 

ẋ1 = −a1x1 + x2 + u 

ẋ2 = −a2x1 − cx1
2 + u 

and the output equation is y = x1. You can check that it is indeed a correct realization by 
differentiating the first state equation and plugging in an expression for ẋ2 from the second equation. 
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b) Let us consider the system with zero input and a1 = 3, a2 = 2 and c = 2. 

ẋ1 = −3x1 + x2 

ẋ2 = −2x1 − 2x1
2 

The linearized system’s matrix is 
� −3 1 

�
A = −2 0 

with the characteristic equation λ2 + 3λ + 2 = 0, which has the roots λ1 = −1 and λ2 = −2. 
Therefore the linearized system is asymptotically stable around the origin, which also means that 
the original nonlinear system is a.s. around the origin (see lecture notes for the relevant theorem). 
You can also verify by linearization that the other equilibrium point (−1, −3) is unstable. 
c) Let us find a Lyapunov function for the linear system, and then find a region where its derivative 
is negative definite along the trajectories of the original nonlinear system. Since the linear system 
is asymptotically stable, for any symmetric positive definite matrix Q there exists a unique positive 
definite matrix P such that A�P + PA = −Q. Let us choose Q = I. Solving the system of linear 
equations imposed by the matrix relation we obtain 

1 1 
P = 

� 
2
1 

−2 

� 

− 12 

which gives us a quadratic Lyapunov function 

V (x) = x�Px =
1 
x 21 − x1x2 + x 2 

2 2 

Taking a derivative of V (x) along the trajectory using the chain rule we get: 

V̇ (x) = −x 21 − x 22 − 2x 2(2x2 − x1) = −x 2(1 + 2(2x2 − x1)) − x 2 
1 1 2 

The contour lines of the found Lyapunov function are 

1 
x1

2 − x1x2 + x 2 = C2 

2 2 

for various constants C. Let us find such C that if the point 
� 

x1 x2 
� 

is within the boundary then 
V̇ (x) < 0. Then the trajectory started in this set will stay there, and will asymptotically decay to 
zero. Note that 

V (x) = 
1 
x1

2 +
1

(x1 − 2x2)
2 = C2 

4 4 
therefore 

|2x2 − x1| < 2C 

Therefore if C < 1/4 the derivative is strictly less than zero. Hence we found a region of attraction 
as an ellipse, given by 

1 
x 2 + (x1 − 2x2)

2 <1 4 
Any ball located completely within this ellipse will also be a region of attraction. Note also that 
this set is not exhaustive, there are other points in space that converge to zero. 
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Exercise 14.2 (a) The system is asymptotically stable if all the roots of the characteristic poly­
nomial lie in the left half of the complex plane. Note that characteristic polynomial for matrix A 
in a control canonical form is given by 

det(A −  λI) = λN + a0λ
N−1 + . . . + aN−1 

b) Use continuity argument to prove that destabilizing perturbation with the smallest Frobenius 
norm will place an eigenvalue of A + Δ on the imaginary axis. Suppose that the minimum pertur­
bation is Δ.¯  Assume that there is an eigenvalue in the right half plane. Consider a perturbation of 
the form cΔ,¯  where 0 ≤ c ≤ 1. As c changes from 0 to 1 at least one eigenvalue had to cross jω axis, 
and the resulting perturbation has a smaller Frobenius norm than Δ.¯  This proves contradiction 
with the original assumption that A + Δ̄ has an eigenvalue in the right half plane. 
c) The characteristic polynomial for the perturbed matrix is 

det(A − λI) = λN + (a + δ ) λN−1 
0 0 + . . . + (aN−1 + δN )−1  

We know that there exists a root λ = jω, where ω is real. If we plug this solution in, and assemble 
the real and imaginary parts and set them equal to zero, we’ll get two linear equations in δ with 
coefficients dependent on ak and powers of ω. For example, for a 4th order polynomial: 

( )4 + ( + )( )3 + ( + )(  jω a0 δ0 jω a1 δ1 jω)2 + (a2 + δ2)jω + a3 + δ3 = 0 

results in the following two equations: 

4 − ( + ) 2 ω a1 δ1 ω + a3 + δ3 = 0 

−(a 3 
0 + δ0)ω + (a2 + δ2)ω = 0 

This equation can be written in matrix form as follows: 
  

� δ  0

0 
−ω3 

−ω2 0 1 
0 ω 0 

⎛ ⎞
� ⎜⎜

   
δ 4
1 −  +  ω a ω2

1 − a
⎝ = 3 

 δ   0ω
3 

2 a − a2ω 
δ3 

⎟ � �
⎠⎟

or 
A(ω)δ = B(ω) 

Therefore the problem can be formulated as finding a minimal norm solution to an underdetermined 
system of equations: 

min δ  
A(ω)δ=B(ω) 

� �

By inspection we can see that matrix A has full row rank for any value of ω unequal to zero. If 
ω = 0 the solution is δ3 = −a3, and the rest of the δk equal to zeros. For all other values of ω the 
solution can be expressed as a function of ω: 

¯ δ(ω) = A�(ω) 
�
A( 1

ω)A�(ω) −  
B(ω) 

Note that the matrix AA� is diagonal, and can be easily

�

 inverted. By minimizing the norm of this 
expression over ω we can find ω̄ that corresponds to the minimizing perturbation. Then plug this ω̄ 
in the previous equation to compute minimizing perturbation ¯ δ(ω̄) explicitly. Compare the norms 
of the solutions corresponding to ω = ω̄ and  ω = 0 (i.e. compare δ̄(ω̄) and a3), and choose the 

3


�� ��



minimum as the solution. This way we converted the problem to minimization of a function of a 
single variable, which can be easily solved. 
d) In case N = 2 the characteristic polynomial of the perturbed matrix is 

2 λ + (a0 + δ0)λ + (a1 + δ1) = 0 

where λ = jω. For ω = 0 the minimizing solution is δ1 = −a1, δ0 = 0. If ω = 0, plug in λ = jω, 
and the resulting system of equations is 

δ1 = ω2 − a1 

δ0 = −a0 

This is a proper system (number of equations is equal to the number of unknowns), and its solution 
is given directly by the equations. To minimize the norm of the solution we set ω = 

√
a1. Note 

that stability of original matrix A requires that a1 > 0, a0 > 0 (in fact positivity of all coefficients 
is always a necessary condition, but not sufficient for N > 2 - use Routh criterion for a test in that 
case!). Next, we have to compare |a1| and |a0|, and choose the smallest of them to null with δ1

or δ0. In our problem a0 = a1 = a, therefore there are 2 solutions: (0, a) and (a, 0) for the set of δ’s. 

Exercise 14.5 a) Consider a nonlinear time-invariant system 

ẋ = f(x, u) 

and its linearization around an equilibrium point (x,˜  ũ) is 

δẋ = Aδx + Bδu. 

1) Since the feedback δu = Kδx asymptotically stabilize the linearized system, all the eigenvalues

of the matrix A + BK are in OLHP.

2) Without loss of generality, we can take (x,˜  ũ) = (0, 0) where the nonlinear system is linearized

around. Then,


∂f 
ẋ = f(x, u) = 

∂x 

��� ∂f 
x + u + Φ(x, u),

(x,˜ ũ)=(0,0) ∂u 

where Φ(  the order of 2 x, u) is in x .


��
(x,˜ ũ)=(0,0) 

If u = kx, the above equation can be written as follows:

�




f(x, u) = Ax + Bu + Φ(x, kx), 

where 

�Φ(x, kx)� 
0 as �x

x
→ � → 0. � �

Thus the original nonlinear system is locally stabilized with the control law u = kx. 
b) Consider the system S1: 

ÿ + ẏ 4 + ẏ 2 u +  y 3 = 0 

where u is the input.

1) Let x1 = y and x2 = ẏ, then state space representation of the system S1 is
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� 
ẋ1 

� �  
x

= 2 

ẋ 3
2 −  x 2 4 . 

1 − x2u − x2

�

Thus the unique equilibrium point x∗ is found to be x∗ = (0, 0), which is independent on u∗. 
2) Choose u∗ = 0. Then the linearized system is 

˙
�  

0 1 0 
δx =  δx + −3 2 − 2  − 4 3 2


� x  x2u x  (x∗,u1 2
∗)=(0,0) 

  
−x  

 2
 (x∗,u∗)=(0,0)

0 1 0 

� �

 

�
� � �

= δx + δu

�

0 0 

� �
� �

0


�

δẋ = Aδx + Bδu.


Since the eigenvalues of the matrix A are at 0, and the δu term does not enter to the linearized 
system, the linearized system can not conclude the local stability of the nonlinear system S1. 
c) Let u = c − x3 

2 where c is a function of x1 and x2. Then

ẋ1 = x2


ẋ2 = −x3 
1 − x2

2(c − x2
2) −  x4

2 = −x3 
1 − cx2 

2.


So, it can be considered that this system has a nonlinear spring.

Now, choose a Lyapunov function candidate in the V (x) = x4 2

1 + x2. Then,


V (x) = 
�   
 ˙ x
4 2x3

1 2x2 
��

− 3 2 x1  cx2 

= 4x3 x − 2 x3 x − cx3 

−
�

1 2 2 1 2

= x2(2x3 
1 − 2cx2

2 )
= 2x2(x3 

1 − cx2
2 ).

In order to make V̇ (x) negative definite, we would like to have set 

2 
3 2 x1 x1 − cx2  = −x2 − 

x2 

x2 
1 + x2 

2 + x3
1x→ = 2  c  .

x3 
2

This choice of c makes V̇ (x) be 

V̇ (x) = −2x2 2
1 − 2x2 < 0 ∀x = 0. 

Thus the following control input 
  

x2

2 1 x 3 u = − 2 

�
x2 + 

�
− x2 x2 

stabilizes the system. 
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Exercise 14.7 (a) The linearized system is given by: 
� 

ẋ1 
� �   

= 
−1 2x2 x1 

ẋ2 −x2 −(x1 + 1) 

� � �

Hence, the matrix A of the linearized system

����

�

x2 
0 

 is: 
� −1 0 

A = 
0 −1 

�

A has repeated eigenvalues at −1. Thus, the nonlinear system is locally asymptotically stable about 
the origin. 

(b) The linearized system is given by: 
� 

ẋ 2
1 

� 

= 

� 
3x1 1 

� ��  
�

� 

� x1 

ẋ2 1 −1 x2 
0 

�

Hence, the matrix A of the linearized system is: 

�

� 
0 1 

A = 
1 −1 

�

√
The characteristic polynomial is: λ(1 + λ) − 1 = 0. The eigenvalues are thus λ1,2 = −1

 2 ± 5 
2 (one 

of the eigenvalues is in the right half plane), and the nonlinear system is unstable about the origin. 

(c) The linearized system is given by: 
� 

ẋ1 
�

= 
ẋ2 

� �� � 
x1 

� −1 1 
2x1 −1 

�
x2 

0 

Hence, the matrix A of the linearized system is: 

���

� −1 1 
A = 

0 −1 

�

A has repeated eigenvalues at −1. Thus, the nonlinear system is locally asymptotically stable about 
the origin. 

(d) The linearized system is given by: 
� 

x1(k + 1) 
�    

2 x (k) x
= 

�
2

� �� �
1(k) 

x2(k + 1) 1 1 x2(k) 
0 

�

Hence, the matrix A of the linearized system is: 

���

� 
2 0 

A = 
1 1 

�

A has eigenvalues λ1 = 2 and λ2 = 1. Since one of the eigenvaues is outside the unit disk, the 
nonlinear system is unstable about the origin. 
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(e) The linearized system is given by:


�    
x1(k + 1) −x (k)ex1(k)x

=
2(k) 1(k)x2(k)

2 −x x

 1(k)e x1(k) 
x2(k + 1) 

� �
1 2 

� �
��

�
�� x2(k) 
0 

�

Hence, the matrix A of the linearized system is: 
� 

0 0 
A = 

1 2 

�

A has eigenvalues λ1 = 0 and λ2 = 2. Since one of the eigenvalues is outside the unit disk, the 
nonlinear system is unstable about the origin. 
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