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HOMEWORK 5 SOLUTIONS

Exercise 7.2 a) Suppose ¢ = 2. Then the impulse response of the system is

h(t)=2(e" —e %) for t>0

One may assume that u(t) = 0 for ¢ < 0 this will just alter the lower limit of integration in the
convolution formula, but will not affect the state space description, note also that the system is
causal.

t
y(t) = / 2e= =) 2Dy (Vs t > 0.
0

Hence by use of Leibniz differentiation rule,

t t
J(t) = 2 / %(e—@—ﬂ e 2Dy ()i = 2 / (2e=20=7) _ ==Yy ()dr,
0 0

and

j(t) =2 /0 t(e_(t_T) — 462Ny ()dr 4 2u(t).

Now, let z1(t) = y(t) and z2(t) = §(¢), then we have

(o) =% 5 () +(5) e

Since x1(t) and x2(t) can be written as & = Ax 4+ Bu, there variables satisfy the continuous time
state property and are this valid state variables.
b) The transfer function of the system is

2(s+2) —c(s+1)

s24+3s+2
When ¢ = 2 there are no s terms in the numerator, which implies that the output y(¢) only de-
pends on u(t) but not on 4(t). Our selection of state variables is valid only for ¢ = 2. If ¢ # 2, the
reachability canonical form may guide us to the selection of state variables

H(s) = ,  Re(s) > —1.

Exercise 7.3 In this problem, we have
g = —ao(t)y(t) + bo(t)u(t) + bi(t)u(t).
That is,

y = / —ao(t)y(t) + bo(tyu(t) + / b (t)is(2).
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Notice that in the T1I case, the coefficients ag, by, and by were constants, so we were able to integrate
the term [ byu(t). In this case, we can still get rid of the u(t), by integration by parts. We have

t/m@M@Mﬁ:h@M@}—/u@m@Mt

So, our equation becomes

yzmwmw+/—%mmw+wm»4Mmmw

Now, let .
& = —ag(t)y(t) + (bo(t) — b1 (t))ul(t),
we have that
y =z + b1 (t)u(t),

and substituting y in the equation for & we get:

o= —ao(t)a(t) + (bo(t) — Bi(8) — ao(t)br (1)) ult)
y = x+bi(t)u(t)

Exercise 10.1 a) A = [ (1) 8 ]

J1

b) Let J = be the Jordan form decomposition of A, A = MJM™!,
Jq

Note that Jk:O<:>Jik:O,1§i§q.
Also note that A¥ = M J*M~" and hence A* =0 < J*¥ =0.
Thus, it suffices to show that Jl-k =0, for all 7 € {1,...,q} for some finite positive power k iff all
the eigenvalues of A are 0.
First, we prove sufficiency: If all the eigenvalues of A are 0, then the corresponding Jordan blocks
have zero diagonal elements and are such that Jg” = 0 for every i, where n; is the size of J;. Let
ko, = maxi<j<q ;. ko is finite and we have Jf“ =0,1<i<q.
Next, we proof necessity. Suppose there exists at least one eigenvalue of A, say \;,, that is non-zero.
Note that the diagonal elements of the k*" power of the corresponding Jordan block(s) are )\?O, for
any positive power k. Hence, there exists at least one ¢ such that Jik # 0, for any positive power k.
If A has size n, then the size of each of the Jordan blocks in its Jordan form decomposition is at
most n. Hence k, <n and A™ = 0.

c¢) The smallest value is k, defined in part (b). Here, k, = n,.

J1
d) Let J = be the Jordan form decomposition of A. We have that:
Jq
R(AMY = R(AF) & R(JFTY) = R(JF)

Thus it suffices to look for the smallest value of k for which R(J¥*1) = R(J*). Note that a Jordan
block associated with a non-zero eigenvalue has full column rank, and retains full column rank



when raised to any positive power k. On the other hand, a nilpotent Jordan block of size n; has
column rank n; — 1, and is such that rankJ¥ = max{0,n; — k}. Let N = {i|J;is nilpotent}. Define
Emin = max;en 1. kmin is the smallest value of k for which R(J*+1) = R(J¥).

Exercise 11.1.
Since the characteristic polynomial of A is a determinant of a matrix 21 — A,

det(zI — A) = det((zI — A)T) = det (21 — AT),
first we show that

det(zI — Ay) = det(zI — Aa) = q(2)
for given A; and As. For

—Q@n—1 1 O 0 0 1 0 0
—Qqn—2 0 1 0 0 0 1 0
Ay = S and Ap=1| + . :
—q¢ 0 0 1 0 0 0 1
—q 00 0 - —¢1 —q —Qn—1
we have
z4+qp—1 -1 0 --- 0 z -1 0 -- 0
Qn—2 z -1 -+ 0 0O =z -1 -- 0
2l — Ay = : : Lo and zI — Ay = S : ) :
@ 0 0 - -1 0 0 0 - -1
q0 o 0 - =z %o @ g2 - Z2+Gn-1

Recall that det(A) = a;1 Ai1 + ainlio + - - - + ainAjy, for

a1 a2 -+ Qin

az1 a2 - a2n
A= ,

Gn1 Aap2 - Aapn

where A;; is a cofactor matrix corresponding a;;. Then,
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where the last = depends on whether n is an even or odd number.
determinant of zI — As using cofactors on the last row of zI — A, it is clear that we have

Also it is true that

Hence

det(zI — A) = det((zI — A)T) = det(2I — AT).

det(zI — Ay) = det(zI — Ag) = q(2).

0 0 0 O

z —1 0 O

0 =z 0 O

0 0 z —1

0 O 0 =z
0 0 0 0
-1 0 0 0
z -1 0 0
0 0 -1 0
0 0 z -1

Similarly if we take the

det(zI — Ay) = det(zI — AT) = det(21 — Ay) = det(2I — AT) = q(2).

Then we have

q(z)

q(2)

b) For Ay, we have

o o

O e

q0

(24 gn-1)2""t + gnoo" 2+ + @z + qo
2"+ qn_lznfl + qn_gz"d +--+q1z2+ qo-

-1 0

N —1
0 0

q1 g3

0 0

0 0

A —1
gn—2 )\z + 4n—

o O O



It is clear from Eqn 1 that the only nonzero v, is

1
Ai
Y; = )\12
a1
(2
Then Eqn 1 becomes
i =i 0 0
0 N : :
: ; -\ 0
q0 Aiq1 (Ni + @) AP! Q-+ qNit AT g AT
since \; is a root of g(\).
c¢) Consider
0 1
A=10 0 1
6 5 —2

Its eigenvalues are \; = —1, Ao = —3, and A3 = 2. Note that this A has the form of A5 thus the
corresponding eigenvectors can be written as follows:

1 1 1
v = )\1 , Ug = )\2 , Ug = )\3
v 2 2

Using those three eigenvectors we can obtain the similarity transformation matrix, M, to make A
diagonal:

M = V1 Uy Vg
o
Thus with
A 0 0
A= 0 X O ,
0 0 A3
we have
A= MAM™!,

which implies that



0 0 M
1 1 1 -1 0 0 1 -1 -1
= 1 -3 2 0 30 L Y
T . PRI
1 9 4 0 0 2 L .
and
et 0 0
et — M 0 et 0 M1
0 0 est
1 1 1 et 0 0 1 -1 -1
_ 1 3 2 0 -3t 0 1 ? 16
T W o)\ e
1 9 4 0 0 e o =

Exercise 11.3 This equality can be shown in a number of ways. Here we will see two. One way
is by diagonalization of the matrix

o w

—w o )

Its characteristic equation is x(A4) = (A — 0)? + w?, yielding eigenvalues A = o & jw. Using the
associated eigenvectors, we can show that it has diagonalization

<—Jw §>:<—1j ;><Jjw a+jw><
ol L0 (7T e )

p eth+87th o elwt_g—jwt
— ° Jwt 2 Jwt ‘ Jwt J2 Jwt
o—el¥"te” gelte”
€ 72 € 2

_ < ¢ cos(wt) e sin(wt) ).

—e? sin(wt) e cos(wt)

i3

—J% )'

NI NI

Now

[T NI
<.
hﬂ\’)\»—l
NI
SN~—

An arguably simpler way to achieve this result is by applying the inverse Laplace transform
identity ! = £ [(sI — A)~']. We have

=7

and so

s (L2 )



Taking the inverse Laplace transform element-wise gives us the previous result.

Exercise 11.4 This equality is shown through the definition of the matrix exponential. The

derivation is as follows.
k
ltk A
k! B
0

A
ewlt( " )]
k
1 [ tkA*
k! tk Bk
k=0

(B )= ( )
ZZO:O %thk; etB

Exercise 11.5 By direct substitution for the proposed solution, we have:

e T

e A B A (1) = e A B e A—t)(A+B) gloA (1 )

_ e_tABe(t_to)(A+B)€t"A.I‘(tO) (2)
Differentiating the proposed solution, we have:

dx(t)
dt

_ —Ae_tAe(t_to)(A+B)€toAx(to) + e—tA(A + B)e(t_to)(A+B)€t°Al‘(to)

But since Ae t4 = e t4 A, this is:
= e*tA(—A + A+ B)e(t*to)(A+B)et"Ax(to)

= e A Beltto)(AFB) gtoA (1 o

Since (3) and (2) are equal, the proposed solution satisfies the system of ODEs and hence is a
solution. Moreover, it can be shown that the solution is unique (though this is not the subject of
this class).
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